Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Bio Protoc ; 13(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36789085

ABSTRACT

Utilizingresources available from the mother's body to guarantee healthy offspring growth is the fundamental reproductive strategy. Recently, we showed that a class of the largest extracellular vesicles known as exophers, which are responsible for the removal of neurotoxic components from neurons ( Melentijevic et al., 2017 ) and damaged mitochondria from cardiomyocytes (Nicolás-Ávila et al., 2020), are released by the Caenorhabditis elegans hermaphrodite body wall muscles (BWM), to support embryonic growth ( Turek et al., 2021 ). Employing worms expressing fluorescent reporters in BWM cells, we found that exopher formation (exophergenesis) is sex-specific and fertility-dependent. Moreover, exophergenesis is regulated by the developing embryo in utero, and exophers serve as transporters for muscle-generated yolk proteins, which can be used to nourish the next generation. Given the specific regulation of muscular exophergenesis, and the fact that muscle-generated exophers are much larger than neuronal ones and have different targeting, their identification and quantification required a modified approach from that designed for neuronal-derived exophers ( Arnold et al., 2020 ). Here, we present a methodology for assessing and quantifying muscle-derived exophers that can be easily extended to determine their function and regulation in various biological contexts. Graphical abstract.

3.
EMBO J ; 41(15): e109566, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35762422

ABSTRACT

CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.


Subject(s)
Caenorhabditis elegans Proteins , Ubiquitin , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
EMBO Rep ; 22(8): e52071, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34288362

ABSTRACT

Organismal functionality and reproduction depend on metabolic rewiring and balanced energy resources. However, the crosstalk between organismal homeostasis and fecundity and the associated paracrine signaling mechanisms are still poorly understood. Using Caenorhabditis elegans, we discovered that large extracellular vesicles (known as exophers) previously found to remove damaged subcellular elements in neurons and cardiomyocytes are released by body wall muscles (BWM) to support embryonic growth. Exopher formation (exopheresis) by BWM is sex-specific and a non-cell autonomous process regulated by developing embryos in the uterus. Embryo-derived factors induce the production of exophers that transport yolk proteins produced in the BWM and ultimately deliver them to newly formed oocytes. Consequently, offspring of mothers with a high number of muscle-derived exophers grew faster. We propose that the primary role of muscular exopheresis is to stimulate reproductive capacity, thereby influencing the adaptation of worm populations to the current environmental conditions.


Subject(s)
Caenorhabditis elegans Proteins , Genetic Fitness , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Female , Male , Muscles , Reproduction
5.
Front Mol Biosci ; 8: 650730, 2021.
Article in English | MEDLINE | ID: mdl-33842548

ABSTRACT

The proteolytic machinery activity diminishes with age, leading to abnormal accumulation of aberrant proteins; furthermore, a decline in protein degradation capacity is associated with multiple age-related proteinopathies. Cellular proteostasis can be maintained via the removal of ubiquitin (Ub)-tagged damaged and redundant proteins by the ubiquitin-proteasome system (UPS). However, during aging, central nervous system (CNS) cells begin to express a frameshift-mutated Ub, UBB+1. Its accumulation is a neuropathological hallmark of tauopathy, including Alzheimer's disease and polyglutamine diseases. Mechanistically, in cell-free and cell-based systems, an increase in the UBB+1 concentration disrupts proteasome processivity, leading to increased aggregation of toxic proteins. On the other hand, a low level of UBB+1 improves stress resistance and extends lifespan. Here we summarize recent findings regarding the impact of UBB+1 on Ub signaling and neurodegeneration. We also review the molecular basis of how UBB+1 affects UPS components as well as its dose-dependent switch between cytoprotective and cytotoxic roles.

6.
Proc Natl Acad Sci U S A ; 117(4): 2170-2179, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31932427

ABSTRACT

Tuberous Sclerosis Complex (TSC) is a rare genetic disease that manifests with early symptoms, including cortical malformations, childhood epilepsy, and TSC-associated neuropsychiatric disorders (TANDs). Cortical malformations arise during embryonic development and have been linked to childhood epilepsy before, but the underlying mechanisms of this relationship remain insufficiently understood. Zebrafish have emerged as a convenient model to study elementary neurodevelopment; however, without in-depth functional analysis, the Tsc2-deficient zebrafish line cannot be used for studies of TANDs or new drug screening. In this study, we found that the lack of Tsc2 in zebrafish resulted in heterotopias and hyperactivation of the mTorC1 pathway in pallial regions, which are homologous to the mammalian cortex. We observed commissural thinning that was responsible for brain dysconnectivity, recapitulating TSC pathology in human patients. The lack of Tsc2 also delayed axonal development and caused aberrant tract fasciculation, corresponding to the abnormal expression of genes involved in axon navigation. The mutants underwent epileptogenesis that resulted in nonmotor seizures and exhibited increased anxiety-like behavior. We further mapped discrete parameters of locomotor activity to epilepsy-like and anxiety-like behaviors, which were rescued by reducing tyrosine receptor kinase B (TrkB) signaling. Moreover, in contrast to treatment with vigabatrin and rapamycin, TrkB inhibition rescued brain dysconnectivity and anxiety-like behavior. These data reveal that commissural thinning results in the aberrant regulation of anxiety, providing a mechanistic link between brain anatomy and human TANDs. Our findings also implicate TrkB signaling in the complex pathology of TSC and reveal a therapeutic target.


Subject(s)
Anxiety/metabolism , Epilepsy/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Receptor, trkB/metabolism , Tuberous Sclerosis/metabolism , Zebrafish Proteins/metabolism , Animals , Anxiety/genetics , Anxiety/psychology , Disease Models, Animal , Epilepsy/genetics , Epilepsy/psychology , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Receptor, trkB/genetics , Seizures/genetics , Seizures/metabolism , Seizures/psychology , Tuberous Sclerosis/genetics , Tuberous Sclerosis/psychology , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...