Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336477

ABSTRACT

With the ongoing digitalization of industry, imaging sensors are becoming increasingly important for industrial process control. In addition to direct imaging techniques such as those provided by video or infrared cameras, tomographic sensors are of interest in the process industry where harsh process conditions and opaque fluids require non-intrusive and non-optical sensing techniques. Because most tomographic sensors rely on complex and often time-multiplexed excitation and measurement schemes and require computationally intensive image reconstruction, their application in the control of highly dynamic processes is often hindered. This article provides an overview of the current state of the art in fast process tomography and its potential for use in industry.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods
2.
Int J Mol Sci ; 22(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34884712

ABSTRACT

Three new compounds, namely [HL]2+[CuCl4]2-, [HL]2+[ZnCl4]2-, and [HL]2+[CdCl4]2- (where L: imipramine) were synthesized and their physicochemical and biological properties were thoroughly investigated. All three compounds form isostructural, crystalline systems, which have been studied using Single-Crystal X-ray diffraction analysis (SC-XRD) and Fourier-transform infrared spectroscopy (FTIR). The thermal stability was investigated using thermogravimetric analysis (TGA) and melting points for all compounds have been determined. Magnetic measurements were performed in order to study the magnetic properties of the compounds. The above mentioned techniques allowed us to comprehensively examine the physicochemical properties of the newly obtained compounds. The biological activity was investigated using the number of Zebrafish tests, as it is one of the most common models for studying the impact of newly synthesized compounds on the central nervous system (CNS), since this model is very similar to the human CNS.


Subject(s)
Cadmium/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Embryo, Nonmammalian/cytology , Zebrafish/growth & development , Zinc/chemistry , Animals , Electrons , Embryo, Nonmammalian/drug effects , Larva/drug effects , Larva/growth & development
3.
Sensors (Basel) ; 20(21)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113871

ABSTRACT

Phase separation based centrifugal forces is effective, and thus widely explored by the process industry. In an inline swirl separator, a core of the light phase is formed in the center of the device and captured further downstream. Given the inlet conditions, this gas core created varies in shape and size. To predict the separation behavior and control the process in an optimal way, the gas core diameter should be measured with the minimum possible intrusiveness. Process tomography techniques such as electrical resistance tomography (ERT) allows us to measure the gas core diameter in a fast and non-intrusive way. Due to the soft-field nature and ill-posed problem in solving the inverse problem, especially in the area of low spatial resolution, the reconstructed images often overestimate the diameter of the object under consideration leading to unreliable measurements. To use ERT measurements as an input for the controller, the estimated diameters should be corrected based on secondary measurements, e.g., optical techniques such as high-speed cameras. In this context, image processing and image analysis techniques were adapted to compare the diameter calculated by an ERT system and a fast camera. In this paper, a correction method is introduced to correct the diameter obtained by ERT based on static measurements. The proposed method reduced the ERT error of dynamic measurements of the gas core size from over 300% to below 20%, making it a reliable sensing technique for controlled separation processes.

4.
Sensors (Basel) ; 20(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867266

ABSTRACT

This paper presents the feasibility study of dynamic flow measurements using the concept of a rotatable electrical capacitance tomography (ECT) sensor. The experiment considered horizontal flow in a pneumatic conveying flow loop in the case of dense phase flow. Slugs and settled layers were imaged and a comparison was made between no rotation or rotation of the sensor for two image reconstruction schemas: linear back projection (LBP) and non-linear iterative back projection. Data were evaluated both qualitatively and quantitatively by estimating the solids concentration level for different hue levels.

5.
Sensors (Basel) ; 20(2)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-32284509

ABSTRACT

Electrical capacitance tomography (ECT) is one of non-invasive visualization techniques which can be used for industrial process monitoring. However, acquiring images trough 3D ECT often requires performing time consuming complex computations on large size matrices. Therefore, a new parallel approach for 3D ECT image reconstruction is proposed, which is based on application of multi-GPU, multi-node algorithms in heterogeneous distributed system. This solution allows to speed up the required data processing. Distributed measurement system with a new framework for parallel computing and a special plugin dedicated to ECT are presented in the paper. Computing system architecture and its main features are described. Both data distribution as well as transmission between the computing nodes are discussed. System performance was measured using LBP and the Landweber's reconstruction algorithms which were implemented as a part of the ECT plugin. Application of the framework with a new network communication layer reduced data transfer times significantly and improved the overall system efficiency.

6.
Sensors (Basel) ; 19(15)2019 Aug 04.
Article in English | MEDLINE | ID: mdl-31382667

ABSTRACT

Presently, Electrical Capacitance Tomography (ECT) is positioned as a relatively mature and inexpensive tool for the diagnosis of non-conductive industrial processes. For most industrial applications, a hand-made approach for an ECT sensor and its 3D extended structure fabrication is used. Moreover, a hand-made procedure is often inaccurate, complicated, and time-consuming. Another drawback is that a hand-made ECT sensor's geometrical parameters, mounting base profile thickness, and electrode array shape usually depends on the structure of industrial test objects, tanks, and containers available on the market. Most of the traditionally fabricated capacitance tomography sensors offer external measurements only with electrodes localized outside of the test object. Although internal measurement is possible, it is often difficult to implement. This leads to limited in-depth scanning abilities and poor sensitivity distribution of traditionally fabricated ECT sensors. In this work we propose, demonstrate, and validate experimentally a new 3D ECT sensor fabrication process. The proposed solution uses a computational workflow that incorporates both 3D computer modeling and 3D-printing techniques. Such a 3D-printed structure can be of any shape, and the electrode layout can be easily fitted to a broad range of industrial applications. A developed solution offers an internal measurement due to negligible thickness of sensor mount base profile. This paper analyses and compares measurement capabilities of a traditionally fabricated 3D ECT sensor with novel 3D-printed design. The authors compared two types of the 3D ECT sensors using experimental capacitance measurements for a set of low-contrast and high-contrast permittivity distribution phantoms. The comparison demonstrates advantages and benefits of using the new 3D-printed spatial capacitance sensor regarding the significant fabrication time reduction as well as the improvement of overall measurement accuracy and stability.

7.
Water Sci Technol ; 57(11): 1743-8, 2008.
Article in English | MEDLINE | ID: mdl-18547925

ABSTRACT

This paper investigates in-sewer sediment deposit behaviour and its influence on the hydraulic performance of sewer pipes. This evaluation is based on experimental results regarding the mobility of non-cohesive and partly cohesive deposits in a partially full circular pipe. The focus of these tests is on the development of bed forms and friction characteristics. In particular, it is investigated to what extent the bed forms from the non-cohesive and (partly) cohesive sediments affect a sewer's discharge capacity. Based on the laboratory study results and on the existing criteria for sewer design, a generic assessment of a sewer's hydraulic performance is made. The relative discharge factor for a pipe with sediment deposit is analysed in terms of the thickness and roughness of the deposit.


Subject(s)
Sewage/chemistry , Particle Size , Waste Disposal, Fluid/methods , Water Movements
8.
Water Sci Technol ; 57(9): 1317-27, 2008.
Article in English | MEDLINE | ID: mdl-18495994

ABSTRACT

The paper is focussed on the concept of defining the "predictability" of sediment transport. Engineers are faced with a number of sediment transport formulas derived from different tests and described as suitable for application in sewers. Bed and suspended load formulas vary in form and performance, generally depending on the data sets that were used to calibrated them. As different sediment types have been tested no single, generally valid formula has been established so far. Formulas are distributed in the scientific literature and are often reported without the information necessary to define their range of potential applicability. Therefore, this paper along with analysing the formulas available, will also comment on the assumptions used in their development as well as the reliability of their underlying data to aid engineers in the selection of the most appropriate sediment transport formulae to correspond with the environment in which they are working.


Subject(s)
Geologic Sediments/chemistry , Sewage/chemistry , Water Movements , Models, Theoretical , Reproducibility of Results
9.
Water Res ; 39(20): 5221-31, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16309729

ABSTRACT

The erosion behaviour of various fine-grained sediment deposits has been investigated in laboratory experiments. This work mainly focused on tests using sewer sediment in which strong biochemical reactions were observed during the deposit formation period. A small number of initial tests were conducted in which the deposits were made from mixtures of "clean" mineral and organic sediments. The erosion behaviour observed in these tests was compared with the erosion characteristics for sediments taken from deposits in a sewer. The impact of the biological processes on physical properties such as bulk density, water content, deposit structure and the erosive behaviour as a function of bed shear stress are quantified and discussed. Based on these observations it is believed that bio-processes weaken the strength of the in-pipe sediment deposits. A significantly weaker sediment surface layer was observed during deposition under quiescent oxygen-rich conditions. This resulted in a deposit with low shear strength which may be a cause of a first foul flush of suspended sediment when flow rates were increased. Comparison between tests with sewer sediments and the artificial representative surrogates suggested that the deposits of the later did not correctly simulate the depositional development and the resultant erosion patterns observed with the more bio-active sewer sediment.


Subject(s)
Geologic Sediments , Models, Theoretical , Sewage , Particle Size , Rain , Stress, Mechanical , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...