Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(13): 15810-15822, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32186360

ABSTRACT

A variety of approaches have been developed to release contents from capsules, including techniques that use electric or magnetic fields, light, or ultrasound as a stimulus. However, in the majority of the known approaches, capsules are disintegrated in violent way and the liberation of the encapsulated material is often in a random direction. Thus, the controllable and direction-specific release from microcapsules in a simple and effective way is still a great challenge. This greatly limits the use of microcapsules in applications where targeted and directional release is desirable. Here, we present a convenient ultrasonic method for controllable and unidirectional release of an encapsulated substance. The release is achieved by using MHz-frequency ultrasound that enables the inner liquid stretching, which imposes mechanical stress on the capsule's shell. This leads to the puncturing of the shell and enables smooth liberation of the liquid payload in one direction. We demonstrate that 1-4.3 MHz acoustic waves with the intensity of a few W/cm2 are capable of puncturing of particle capsules with diameters ranging from around 300 µm to 5 mm and the release of the encapsulated liquid in a controlled manner. Various aspects of our route, including the role of the capsule size, ultrasound wavelength, and intensity in the performance of the method, are studied in detail. We also show that the additional control of the release can be achieved by using capsules having patchy shells. The presented method can be used to facilitate chemical reactions in micro- and nanolitre droplets and various small-scale laboratory operations carried in bulk liquids in microenvironment. Our results may also serve as an entry point for testing other uses of the method and formulation of theoretical modeling of the presented ultrasound mechanism.

2.
Biosystems ; 80(2): 193-9, 2005 May.
Article in English | MEDLINE | ID: mdl-15823418

ABSTRACT

Directional mutation pressure associated with replication processes is the main cause of the asymmetry between the leading and lagging DNA strands in bacterial genomes. On the other hand, the asymmetry between sense and antisense strands of protein coding sequences is a result of both mutation and selection pressures. Thus, there are two different ways of superposition of the sense strand, on the leading or lagging strand. Besides many other implications of these two possible situations, one seems to be very important - because of the asymmetric replication-associated mutation pressure, the mutation rate of genes depends on their location. Using Monte Carlo methods, we have simulated, under experimentally determined directional mutation pressure, the divergence rate and the elimination rate of genes depending on their location in respect to the leading/lagging DNA strands in the asymmetric prokaryotic genome. We have found that the best survival strategy for the majority of genes is to sometimes switch between DNA strands. Paradoxically, this strategy results in higher substitution rates but remains in agreement with observations in bacterial genomes that such inversions are very frequent and divergence rate between homologs lying on different DNA strands is very high.


Subject(s)
Biological Evolution , Borrelia burgdorferi/genetics , DNA Mutational Analysis/methods , Genetic Variation/genetics , Models, Genetic , Mutation/genetics , Selection, Genetic , Amino Acid Substitution/genetics , Chromosome Mapping/methods , Computer Simulation , Survival Analysis
3.
Appl Bioinformatics ; 3(1): 31-9, 2004.
Article in English | MEDLINE | ID: mdl-16323964

ABSTRACT

This paper analyses the relationship between the mutation data matrix 1PAM/PET91, representing the effect of both mutation and selection pressures exerted on 16130 homologous proteins of different organisms, and a mutation probability matrix (1PAM/MPM) representing the effect of pure mutation pressure on protein coding of the Borrelia burgdorferi genome. The 1PAM/PMP matrix was derived with the help of computer simulations, which used empirical nucleotide substitution rates found for the B. burgdorferi genome. Here, it is shown that the frequency of amino acid occurrence is strongly related to their effective survival time. We found that the shorter the turnover time of an amino acid under pure mutation pressure, the lower its fraction in the proteins coded by the genome and the more protected by selection pressure is its position in proteins. Results of analyses suggest that during evolution the mutational pressure has been optimised to some extent to the selection requirements.


Subject(s)
Borrelia burgdorferi/genetics , Chromosome Mapping/methods , DNA Mutational Analysis/methods , DNA, Bacterial/genetics , Genetic Variation/genetics , Proteome/genetics , Selection, Genetic , Algorithms , Genome, Bacterial , Mutation , Open Reading Frames/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...