Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Gastrointest Surg ; 28(6): 923-932, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574966

ABSTRACT

BACKGROUND: Sleeve gastrectomy (SG) is one of the most commonly performed bariatric surgeries. SG treats type 2 diabetes mellitus better than several drugs. The mechanisms that underlie this phenomenon are not clear. This study proposed that somatostatin (SST) isoforms SST-14 and SST-28 are key in the carbohydrate after SG. METHODS: Surgeries were performed on 3 groups of Wistar rats: the fasting, surgery control, and SG groups. Plasma levels of glucose, insulin, SST-14, and SST-28 were measured at 2 survival periods after surgery. Islet SST receptor (SSTR) and cell populations were studied. We performed a pasireotide (SST-28 analogue) infusion assay in another group of rats to confirm the influence of SST-28 plasma levels on the delta-cell population. RESULTS: This study found an elevation in the insulin response after SG in animals but a decrease in the insulin response over the long term with a loss of beta-cell mass. An increase in duodenal SST-28-producing cells in the duodenum and a loss of pancreatic SST-14-producing cells were observed after SG in animals but not in controls. The expression of SSTR type 5 in delta-cell populations from each group and the ability of the pasireotide infusion assay to decrease the delta-cell population indicated the effect of SST-28 plasma levels on delta-cell maintenance. CONCLUSION: After SG initiates a compensatory response in the duodenum, beta-cell mass is depleted after loss of the brake that regulates SST-14 at the paracrine level in a nonobese, normoglycemic rat model. This was an experimental model, with no clinical translation to the human clinic, with a preliminary importance regarding new pathophysiologic perspectives or pathways.


Subject(s)
Blood Glucose , Gastrectomy , Insulin , Rats, Wistar , Receptors, Somatostatin , Somatostatin , Animals , Somatostatin/analogs & derivatives , Gastrectomy/methods , Rats , Male , Receptors, Somatostatin/metabolism , Blood Glucose/metabolism , Insulin/blood , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Duodenum/metabolism , Duodenum/surgery
2.
Front Endocrinol (Lausanne) ; 14: 1236103, 2023.
Article in English | MEDLINE | ID: mdl-37635984

ABSTRACT

The biological activity of glucagon has recently been proposed to both stimulate hepatic glucose production and also include a paradoxical insulinotropic effect, which could suggest a new role of glucagon in the pathophysiology type 2 diabetes mellitus (T2DM). An insulinotropic role of glucagon has been observed after bariatric/metabolic surgery that is mediated through the GLP-1 receptor on pancreatic beta cells. This effect appears to be modulated by other members of the proglucagon family, playing a key role in the beneficial effects and complications of bariatric/metabolic surgery. Glucagon serves a dual role after sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). In addition to maintaining blood glucose levels, glucagon exhibits an insulinotropic effect, suggesting that glucagon has a more complex function than simply an "anti-insulin hormone".


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2 , Humans , Glucagon , Insulin , Diabetes Mellitus, Type 2/surgery , Proglucagon
3.
Ann Anat ; 246: 152044, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586517

ABSTRACT

BACKGROUND: Bariatric/metabolic surgery has become the most effective treatment against type 2 Diabetes mellitus (T2DM). The role of many gastrointestinal hormones in T2DM has been proposed, but the pathophysiological models described vary greatly depending on the anatomical rearrangements after surgery. We focus on somatostatin as a common factor in two of the most commonly performed surgical procedures in a healthy rodent model. We performed sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) and also an experimental surgery without gastric involvement (intestinal resection of 50 % jejunum-ileum portion -IR50 %). METHODS: We used five groups of Wistar rats: fasting control, sham-operated, SG-operated, RYGB-operated and IR50-operated. We analysed several parameters 4 and 23 weeks after surgery: plasma SST-14/28 fractions, plasma glucose, insulin release and SST-producing cell expression in the duodenum and pancreatic islets. RESULTS: Numerous SST-producing cells in the duodenum but a low number in the pancreas and a long-term loss of glucose tolerance were observed in SG and RYGB animals. Additionally, a high plasma SST-28 fraction was found in animals after SG but not after RYGB. Finally, IR50 animals showed no differences versus controls. CONCLUSIONS: In our SG model the amplitude of insulin response after metabolic surgeries, is mediated by SST-28 plasma levels derived from the proportional compensatory effect of gastric SST-producing tissue ablation. In addition, a strong compensatory response to the surgical loss of gastric SST-producing cells, leads to long-term loss of insulin production after SG but not in the others.


Subject(s)
Diabetes Mellitus, Type 2 , Rats , Animals , Diabetes Mellitus, Type 2/surgery , Blood Glucose/metabolism , Rats, Wistar , Insulin , Gastrectomy/methods , Somatostatin
4.
J Clin Med ; 10(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34575329

ABSTRACT

Several surgical procedures are performed for the treatment of obesity. A main outcome of these procedures is the improvement of type 2 diabetes mellitus. Trying to explain this, gastrointestinal hormone levels and their effect on organs involved in carbohydrate metabolism, such as liver, gut, muscle or fat, have been studied intensively after bariatric surgery. These effects on endocrine-cell populations in the pancreas have been less well studied. We gathered the existing data on these pancreatic-cell populations after the two most common types of bariatric surgery, the sleeve gastrectomy (SG) and the roux-en-Y gastric bypass (RYGB), with the aim to explain the pathophysiological mechanisms underlying these surgeries and to improve their outcome.

5.
Minerva Chir ; 74(1): 7-13, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29963790

ABSTRACT

BACKGROUND: Numerous hypotheses are called to explain the beneficial effect on glucose metabolism after bariatric surgery. Some authors advocate for the secretion and release of various substances with endocrine functions for the explanation on this event. One of the substances most marked as effector, with contrasting effects but controversial data, is GLP-1. METHODS: Our study was performed in healthy male Wistar rats, to avoid the absence of confounding factors such as T2DM and obesity. In order to know the adaptation of GLP-1 secretion after surgery 5 groups were designated: two control groups (fasting and surgical stress), and three surgical groups (gastric sleeve, 50% resection of the midgut and the Roux en Y gastric bypass). After three months the GLP-1 synthesis in the different portions of the small intestine and the expression of the membrane receptors in pancreatic islet cells were studied by immunohistochemical techniques. RESULTS: There was a significant increase in the number of secretory cells in ileum, duodenum and jejunum in mixed (RYGB) and malabsorptive (RI50) surgical groups. An elevation of pancreatic receptors signal was also observed in the same techniques versus controls. CONCLUSIONS: Our data indicate that intestinal secretion of GLP-1 and its sensitivity to the pancreatic changes were increased like a response of an adaptive effect to the mechanical aggression of the digestive tube and as alteration of nutrient flow after surgery.


Subject(s)
Bariatric Surgery , Glucagon-Like Peptide 1/physiology , Animals , Bariatric Surgery/methods , Gastrointestinal Tract/physiology , Humans , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...