Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 368(1921): 2863-80, 2010 Jun 28.
Article in English | MEDLINE | ID: mdl-20478911

ABSTRACT

Nutrient absorption in the small intestine cannot occur until molecules are presented to the epithelial cells that line intestinal villi, finger-like protrusions under enteric control. Using a two-dimensional multiscale lattice Boltzmann model of a lid-driven cavity flow with 'villi' at the lower surface, we analyse the hypothesis that muscle-induced oscillatory motions of the villi generate a controlled 'micro-mixing layer' (MML) that couples with the macro-scale flow to enhance absorption. Nutrient molecules are modelled as passive scalar concentrations at high Schmidt number. Molecular concentration supplied at the cavity lid is advected to the lower surface by a lid-driven macro-scale eddy. We find that micro-scale eddying motions enhance the macro-scale advective flux by creating an MML that couples with the macro-scale flow to increase absorption rate. We show that the MML is modulated by its interactions with the outer flow through a diffusion-dominated layer that separates advection-dominated macro-scale and micro-scale mixed layers. The structure and strength of the MML is sensitive to villus length and oscillation frequency. Our model suggests that the classical explanation for the existence of villi--increased absorptive surface area--is probably incorrect. The model provides support for the potential importance of villus motility in the absorptive function of the small intestine.


Subject(s)
Intestinal Absorption , Intestine, Small/physiology , Models, Biological , Intestinal Mucosa/physiology , Movement
2.
Magn Reson Med ; 62(1): 116-26, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19353667

ABSTRACT

Conventional methods of quantifying segmental and peristaltic motion in animal models are highly invasive; involving, for example, the external isolation of segments of the gastrointestinal (GI) tract either from dead or anesthetized animals. The present study was undertaken to determine the utility of MRI to quantitatively analyze these motions in the jejunum region of anesthetized rats (N = 6) noninvasively. Dynamic images of the GI tract after oral gavage with a Gd contrast agent were acquired at a rate of six frames per second, followed by image segmentation based on a combination of three-dimensional live wire (3D LW) and directional dynamic gradient vector flow snakes (DDGVFS). Quantitative analysis of the variation in diameter at a fixed constricting location showed clear indications of both segmental and peristaltic motions. Quantitative analysis of the frequency response gave results in good agreement with those acquired in previous studies using invasive measurement techniques. Principal component analysis (PCA) of the segmented data using active shape models resulted in three major modes. The individual modes revealed unique spatial patterns for peristaltic and segmental motility.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Intestine, Small/anatomy & histology , Intestine, Small/physiology , Jejunum/anatomy & histology , Jejunum/physiology , Movement/physiology , Peristalsis/physiology , Algorithms , Animals , Artificial Intelligence , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Rats , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...