Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 204(11): e0020422, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36214553

ABSTRACT

Salmonella virulence relies on the ability of this bacterium to invade the intestinal epithelium and to replicate inside macrophages, which are functions mainly encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), respectively. Complex regulatory programs control the expression of SPI-1 and SPI-2 and functionally related genes, involving the integration of ancestral regulators and regulators that Salmonella has acquired during its evolution. Interestingly, some previous studies have revealed cross talk between the regulatory programs for SPI-1 and SPI-2. Here, we report two additional connections between the regulatory programs controlling the expression of genes for invasion and intracellular replication. Our results show that the acquired regulators HilD and SprB, both encoded in SPI-1, induce, in a cascade fashion, the expression of PhoP and SlyA, two ancestral regulators that activate the expression of SPI-2 and other genes required for intracellular replication. We provide evidence supporting that the regulation of phoP and slyA by HilD-SprB was adapted during the divergence of Salmonella from its closer species, Escherichia coli, with the acquisition of SPI-1 and thus the gain of HilD and SprB, as well as through cis-regulatory evolution of phoP and slyA. Therefore, our study further expands the knowledge about the intricate regulatory network controlling the expression of virulence genes in Salmonella. IMPORTANCE Bacteria have developed diverse regulatory mechanisms to control genetic expression, in the case of pathogenic bacteria, to induce the expression of virulence genes in particular niches during host infection. In Salmonella, an intricate regulatory network has been determined, which controls the spatiotemporal expression of the SPI-1 and SPI-2 gene clusters that mediate the invasion to and the replication inside host cells, respectively. In this study, we report two additional pathways of cross talk between the transcriptional programs for SPI-1 and SPI-2. Additionally, our results support that these additional regulatory pathways were adapted during the divergence of Salmonella from its closer species, Escherichia coli. This study further expands the knowledge about the mechanisms determining the Salmonella virulence.


Subject(s)
Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Salmonella typhimurium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism
2.
Sci Rep ; 9(1): 12725, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31484980

ABSTRACT

HilD is an AraC-like transcriptional regulator encoded in the Salmonella pathogenicity island 1 (SPI-1), which actives transcription of many genes within and outside SPI-1 that are mainly required for invasion of Salmonella into host cells. HilD controls expression of target genes directly or by acting through distinct regulators; three different regulatory cascades headed by HilD have been described to date. Here, by analyzing the effect of HilD on the yobH gene in Salmonella enterica serovar Typhimurium (S. Typhimurium), we further define an additional regulatory cascade mediated by HilD, which was revealed by previous genome-wide analyses. In this regulatory cascade, HilD acts through SprB, a LuxR-like regulator encoded in SPI-1, to induce expression of virulence genes. Our data show that HilD induces expression of sprB by directly counteracting H-NS-mediated repression on the promoter region upstream of this gene. Then, SprB directly activates expression of several genes including yobH, slrP and ugtL. Interestingly, we found that YobH, a protein of only 79 amino acids, is required for invasion of S. Typhimurium into HeLa cells and mouse macrophages. Thus, our results reveal a novel S. Typhimurium invasion factor and provide more evidence supporting the HilD-SprB regulatory cascade.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Repressor Proteins/metabolism , Salmonella typhimurium/metabolism , Transcription Factors/metabolism , Animals , Bacterial Proteins/genetics , HeLa Cells , Humans , Mice , Repressor Proteins/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Transcription Factors/genetics
3.
J Bacteriol ; 201(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30718301

ABSTRACT

H-NS-mediated repression of acquired genes and the subsequent adaptation of regulatory mechanisms that counteract this repression have played a central role in the Salmonella pathogenicity evolution. The Salmonella pathogenicity island 2 (SPI-2) is an acquired chromosomal region containing genes necessary for Salmonella enterica to colonize and replicate in different niches of hosts. The ssrAB operon, located in SPI-2, encodes the two-component system SsrA-SsrB, which positively controls the expression of the SPI-2 genes but also other many genes located outside SPI-2. Several regulators have been involved in the expression of ssrAB, such as the ancestral regulators SlyA and OmpR, and the acquired regulator HilD. In this study, we show how SlyA, HilD, and OmpR coordinate to induce the expression of ssrAB under different growth conditions. We found that when Salmonella enterica serovar Typhimurium is grown in nutrient-rich lysogeny broth (LB), SlyA and HilD additively counteract H-NS-mediated repression on ssrAB, whereas in N-minimal medium (N-MM), SlyA antagonizes H-NS-mediated repression on ssrAB independently of HilD. Interestingly, our results indicate that OmpR is required for the expression of ssrAB independently of the growth conditions, even in the absence of repression by H-NS. Therefore, our data support two mechanisms adapted for the expression of ssrAB under different growth conditions. One involves the additive action of SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on ssrAB, thus favoring in both cases the activation of ssrAB by OmpR.IMPORTANCE The global regulator H-NS represses the expression of acquired genes and thus avoids possible detrimental effects on bacterial fitness. Regulatory mechanisms are adapted to induce expression of the acquired genes in particular niches to obtain a benefit from the information encoded in the foreign DNA, as for pathogenesis. Here, we show two mechanisms that were integrated for the expression of virulence genes in Salmonella Typhimurium. One involves the additive action of the regulators SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on the ssrAB operon, thus favoring its activation by the OmpR regulator. To our knowledge, this is the first report involving the coordinated action of two regulators to counteract H-NS-mediated repression.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Histidine Kinase/antagonists & inhibitors , Histidine Kinase/metabolism , Salmonella typhimurium/enzymology , Trans-Activators/metabolism , Transcription Factors/metabolism , Bacterial Proteins/biosynthesis , Culture Media/chemistry , Genomic Islands , Histidine Kinase/biosynthesis , Operon , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Transcription Factors/biosynthesis , Virulence Factors/biosynthesis
4.
Cell Rep ; 25(4): 825-832.e5, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30355489

ABSTRACT

Bacterial two-component regulatory systems (TCS) couple the detection of niche-specific cues with adaptive gene expression to optimize fitness. In Salmonella Typhimurium (STM), the SsrA-SsrB TCS regulates virulence genes needed for survival within host cells, yet the impact of this TCS on regulatory evolution in this pathogen remains incompletely understood. Here, we show that SsrB alters a transcriptional network controlling bacterial motility to limit inflammasome activation during host cell infection. Using comparative RNA sequencing between STM and S. bongori (SBG) engineered to express SsrB, we show that SsrB represses flagellar gene expression in STM but activates this pathway in SBG, which has evolved in the absence of SsrB. Motility repression in STM is driven by an SsrB-binding region upstream of flhDC that appears to have evolved in STM following divergence from SBG. These data reveal a divergent regulatory circuit in non-coding DNA that reduces flagellar gene expression to evade host defenses.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Evasion , Inflammasomes/metabolism , Salmonella typhimurium/immunology , Animals , Bacterial Proteins/metabolism , Flagella/metabolism , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred C57BL , Movement , Promoter Regions, Genetic/genetics , Protein Binding , RAW 264.7 Cells , Salmonella typhimurium/genetics , Transcription, Genetic
5.
Sci Rep ; 8(1): 7697, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29752442

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 8(1): 4841, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29555922

ABSTRACT

When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Transcription Factors/metabolism , Virulence Factors/genetics , Amino Acid Sequence , Animals , Intestines/microbiology , Mice , Salmonella typhimurium/physiology , Virulence Factors/chemistry , Virulence Factors/metabolism
7.
PLoS Pathog ; 13(7): e1006497, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28704543

ABSTRACT

The evolution of bacterial pathogenicity, heavily influenced by horizontal gene transfer, provides new virulence factors and regulatory connections that alter bacterial phenotypes. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) are chromosomal regions that were acquired at different evolutionary times and are essential for Salmonella virulence. In the intestine of mammalian hosts, Salmonella expresses the SPI-1 genes that mediate its invasion to the gut epithelium. Once inside the cells, Salmonella down-regulates the SPI-1 genes and induces the expression of the SPI-2 genes, which favor its intracellular replication. The mechanism by which the invasion machinery is deactivated following successful invasion of host cells is not known. Here, we show that the SPI-2 encoded transcriptional regulator SsrB, which positively controls SPI-2, acts as a dual regulator that represses expression of SPI-1 during intracellular stages of infection. The mechanism of this SPI-1 repression by SsrB was direct and acts upon the hilD and hilA regulatory genes. The phenotypic effect of this molecular switch activity was a significant reduction in invasion ability of S. enterica serovar Typhimurium while promoting the expression of genes required for intracellular survival. During mouse infections, Salmonella mutants lacking SsrB had high levels of hilA (SPI-1) transcriptional activity whereas introducing a constitutively active SsrB led to significant hilA repression. Thus, our results reveal a novel SsrB-mediated mechanism of transcriptional crosstalk between SPI-1 and SPI-2 that helps Salmonella transition to the intracellular lifestyle.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Transcription Factors/metabolism , Animals , Bacterial Proteins/genetics , Genomic Islands , Humans , Mice , Salmonella typhimurium/genetics , Transcription Factors/genetics , Virulence
8.
J Bacteriol ; 196(21): 3746-55, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25135218

ABSTRACT

Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) have essential roles in the pathogenesis of Salmonella enterica. Previously, we reported transcriptional cross talk between SPI-1 and SPI-2 when the SPI-1 regulator HilD induces expression of the SsrA/B two-component system, the central positive regulator of SPI-2, during the growth of Salmonella to late stationary phase in LB rich medium. Here, we further define the mechanism of the HilD-mediated expression of ssrAB. Expression analysis of cat transcriptional fusions containing different regions of ssrAB revealed the presence of negative regulatory sequences located downstream of the ssrAB promoter. In the absence of these negative cis elements, ssrAB was expressed in a HilD-independent manner and was no longer repressed by the global regulator H-NS. Consistently, when the activity of H-NS was inactivated, the expression of ssrAB also became independent of HilD. Furthermore, electrophoretic mobility shift assays showed that both HilD and H-NS bind to the ssrAB region containing the repressing sequences. Moreover, HilD was able to displace H-NS bound to this region, whereas H-NS did not displace HilD. Our results support a model indicating that HilD displaces H-NS from a region downstream of the promoter of ssrAB by binding to sites overlapping or close to those sites bound by H-NS, which leads to the expression of ssrAB. Although the role of HilD as an antagonist of H-NS has been reported before for other genes, this is the first study showing that HilD is able to effectively displace H-NS from the promoter of one of its target genes.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Salmonella enterica/metabolism , Transcription Factors/metabolism , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , Salmonella enterica/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...