ABSTRACT
AIMS: We assessed the effects of a short-term exercise training on cardiac function, oxidative stress markers, and type 3 iodothyronine deiodinase (D3) activity in cardiac tissue of spontaneously hypertensive rats (SHR) following experimental myocardial infarction (MI). METHODS: Twenty-four SHR (aged 3 months) were allocated to 4 groups: sham+sedentary, sham+trained, MI+sedentary and MI+trained. MI was performed by permanent ligation of the coronary artery. Exercise training (treadmill) started 96 hours after MI and lasted for 4 weeks (~60% maximum effort, 4x/week and 40 min/day). Cardiac function (echocardiography), thioredoxin reductase (TRx), total carbonyl levels, among other oxidative stress markers and D3 activity were measured. A Generalized Estimating Equation was used, followed by Bonferroni's test (p<0.05). RESULTS: MI resulted in an increase in left ventricular mass (p = 0.002) with decreased cardiac output (~22.0%, p = 0.047) and decreased ejection fraction (~41%, p = 0.008) as well as an increase in the carbonyl levels (p = 0.001) and D3 activity (~33%, p<0.001). Exercise training resulted in a decrease in left ventricular mass, restored cardiac output (~34%, p = 0.048) and ejection fraction (~20%, p = 0.040), increased TRx (~85%, p = 0.007) and reduced carbonyl levels (p<0.001) and D3 activity (p<0.001). CONCLUSIONS: Our short-term exercise training helped reverse the effects of MI on cardiac function. These benefits seem to derive from a more efficient antioxidant response and lower D3 activity in cardiac tissue.