Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(3): 1313-1324, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38038260

ABSTRACT

Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIß (hTOP2ß) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage. The unstructured C-terminal domains (CTDs) of hTOP2ß strongly potentiate strand passage activity in ATPase-less enzymes, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleavage in vitro, as well as in vivo. By contrast, aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are present. Our findings are consistent with the proposal that type II topoisomerases acquired ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.


Subject(s)
DNA Topoisomerases, Type II , DNA , Humans , Adenosine Triphosphatases/genetics , Adenosine Triphosphate , DNA/genetics , DNA Topoisomerases, Type II/genetics , Etoposide/pharmacology , DNA Damage
2.
bioRxiv ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37425896

ABSTRACT

Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction. Curiously, most type II topoisomerases (topos II, IV, and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase II ß (hTOP2ß) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss leads to increased DNA nicking and double strand break formation by the enzyme. The unstructured C-terminal domains (CTDs) of hTOP2ß strongly potentiate strand passage activity in the absence of the ATPase regions, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleava in ge vitro , as well as in vivo . By contrast, the aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are restored. Our findings are consistent with the proposal that type II topoisomerases acquired an ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.

3.
Proc Natl Acad Sci U S A ; 120(28): e2302064120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406101

ABSTRACT

Type II topoisomerases transiently cleave duplex DNA as part of a strand passage mechanism that helps control chromosomal organization and superstructure. Aberrant DNA cleavage can result in genomic instability, and how topoisomerase activity is controlled to prevent unwanted breaks is poorly understood. Using a genetic screen, we identified mutations in the beta isoform of human topoisomerase II (hTOP2ß) that render the enzyme hypersensitive to the chemotherapeutic agent etoposide. Several of these variants were unexpectedly found to display hypercleavage behavior in vitro and to be capable of inducing cell lethality in a DNA repair-deficient background; surprisingly, a subset of these mutations were also observed in TOP2B sequences from cancer genome databases. Using molecular dynamics simulations and computational network analyses, we found that many of the mutations obtained from the screen map to interfacial points between structurally coupled elements, and that dynamical modeling could be used to identify other damage-inducing TOP2B alleles present in cancer genome databases. This work establishes that there is an innate link between DNA cleavage predisposition and sensitivity to topoisomerase II poisons, and that certain sequence variants of human type II topoisomerases found in cancer cells can act as DNA-damaging agents. Our findings underscore the potential for hTOP2ß to function as a clastogen capable of generating DNA damage that may promote or support cellular transformation.


Subject(s)
Mutagens , Neoplasms , Humans , Topoisomerase II Inhibitors/pharmacology , Etoposide/pharmacology , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , DNA Damage , DNA
4.
J Chem Inf Model ; 61(6): 2897-2910, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34096704

ABSTRACT

Structure-based drug discovery efforts require knowledge of where drug-binding sites are located on target proteins. To address the challenge of finding druggable sites, we developed a machine-learning algorithm called TACTICS (trajectory-based analysis of conformations to identify cryptic sites), which uses an ensemble of molecular structures (such as molecular dynamics simulation data) as input. First, TACTICS uses k-means clustering to select a small number of conformations that represent the overall conformational heterogeneity of the data. Then, TACTICS uses a random forest model to identify potentially bindable residues in each selected conformation, based on protein motion and geometry. Lastly, residues in possible binding pockets are scored using fragment docking. As proof-of-principle, TACTICS was applied to the analysis of simulations of the SARS-CoV-2 main protease and methyltransferase and the Yersinia pestis aryl carrier protein. Our approach recapitulates known small-molecule binding sites and predicts the locations of sites not previously observed in experimentally determined structures. The TACTICS code is available at https://github.com/Albert-Lau-Lab/tactics_protein_analysis.


Subject(s)
COVID-19 , SARS-CoV-2 , Binding Sites , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , Proteins
5.
J Nat Prod ; 82(10): 2768-2779, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31618025

ABSTRACT

Garcinol, a polyisoprenylated benzophenone isolated from Garcinia genus, has been reported to inhibit eukaryotic topoisomerase I and topoisomerase II at concentrations comparable to that of etoposide (∼25-100 µM). With the aim to clarify the underlying molecular mechanisms by which garcinol inhibits human topoisomerase IIα and topoisomerase IIß, biochemical assays along with molecular docking and molecular dynamics studies were carried out on garcinol and six congeners. The biochemical results revealed that garcinol derivatives appear to act as catalytic inhibitors of topoisomerase II and to inhibit ATP hydrolysis by topoisomerase II via some form of mixed inhibition. The computational investigation identified the structural elements responsible for binding to the biological target and also provided information for the eventual design of more selective and potent analogues. Collectively, our data suggest that garcinol-type agents may bind to the DNA binding surface and/or ATP domain of type II topoisomerases to antagonize function.


Subject(s)
Benzophenones/pharmacology , Garcinia/chemistry , Molecular Docking Simulation , Terpenes/pharmacology , Topoisomerase II Inhibitors/pharmacology , Benzophenones/chemistry , Benzophenones/isolation & purification , Models, Molecular , Prenylation , Terpenes/chemistry , Terpenes/isolation & purification , Topoisomerase II Inhibitors/chemistry
6.
Nucleic Acids Res ; 47(15): 8163-8179, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31287876

ABSTRACT

Type II topoisomerases catalyze essential DNA transactions and are proven drug targets. Drug discrimination by prokaryotic and eukaryotic topoisomerases is vital to therapeutic utility, but is poorly understood. We developed a next-generation sequencing (NGS) approach to identify drug-resistance mutations in eukaryotic topoisomerases. We show that alterations conferring resistance to poisons of human and yeast topoisomerase II derive from a rich mutational 'landscape' of amino acid substitutions broadly distributed throughout the entire enzyme. Both general and discriminatory drug-resistant behaviors are found to arise from different point mutations found at the same amino acid position and to occur far outside known drug-binding sites. Studies of selected resistant enzymes confirm the NGS data and further show that the anti-cancer quinolone vosaroxin acts solely as an intercalating poison, and that the antibacterial ciprofloxacin can poison yeast topoisomerase II. The innate drug-sensitivity of the DNA binding and cleavage region of human and yeast topoisomerases (particularly hTOP2ß) is additionally revealed to be significantly regulated by the enzymes' adenosine triphosphatase regions. Collectively, these studies highlight the utility of using NGS-based methods to rapidly map drug resistance landscapes and reveal that the nucleotide turnover elements of type II topoisomerases impact drug specificity.


Subject(s)
Ciprofloxacin/pharmacology , DNA Topoisomerases, Type II/metabolism , Naphthyridines/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Thiazoles/pharmacology , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , Drug Resistance/drug effects , Drug Resistance/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Domains , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...