Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 728: 109353, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35853481

ABSTRACT

Myeloperoxidase (MPO), an oxidant-producing enzyme of neutrophils, has been shown to prime platelet activity promoting immunothrombosis. Native MPO is a homodimer, consisting of two identical protomers (monomer) connected by a single disulfide bond. But in inflammatory foci, MPO can be found both in the form of a monomer and in the form of a dimer. Beside MPO can also be in complexes with other molecules and be modified by oxidants, which ultimately affect its physicochemical properties and functions. Here we compared the effects of various forms of MPO as well as MPO in complex with ceruloplasmin (CP), a physiological inhibitor of MPO, on the platelet activity. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. MPO was modified with HOCl in a molar ratio of 1:100 (MPO-HOCl). Using surface-enhanced Raman scattering (SERS) spectroscopy we showed that peaks at about 510 and 526 cm-1 corresponded to disulfide bond was recognizable in the SERS-spectra of dimeric MPO, absent in the spectrum of hemi-MPO and less intense in the spectra of MPO-HOCl, which indicates the partial decomposition of dimeric MPO with a disulfide bond cleavage under the HOCl modification. It was shown hemi-MPO to a lesser extent than dimeric MPO bound to platelets and enhanced their agonist-induced aggregation and platelet-neutrophil aggregate formation. MPO modified by HOCl and MPO in complex with CP did not bind to platelets and have no effect on platelet activity. Thus, the modification of MPO by HOCl, its presence in monomeric form as well as in complex with CP reduces MPO effect on platelet function and consequently decreases the risk of thrombosis in inflammatory foci.


Subject(s)
Neutrophils , Peroxidase , Coloring Agents , Disulfides , Hypochlorous Acid , Oxidants , Platelet Activation
2.
Opt Express ; 27(15): 21701-21716, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510242

ABSTRACT

Anomalous optical properties of microscopically inhomogeneous dielectric films placed on a thick metal sublayer are investigated. We study the reflection, scattering, and absorption of the coherent electromagnetic radiation as a function of the incidence angle. Computer simulations show the existence of the incidence angle of the laser beam when the scattering and absorption increase simultaneously for the s-polarization so that almost 60% of the incident light goes in the scattering channel. The critical angle corresponds to the excitation of Fabry-Perot mode. The effect makes it possible to manipulate the reflection from the metafilms.

3.
Nanotechnology ; 29(39): 395708, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-29988021

ABSTRACT

A method for fabricating surface-enhanced Raman scattering (SERS)-active substrates by immersion deposition of silver on a macroporous silicon (macro-PS) template with pore diameters and depth ranging from 500-1000 nm is developed. The procedure for the formation of nanostructured silver films in the layers of macro-PS was optimized. Silver particles of dimensions in the nano- and submicron-scale were formed on the external surface of the macro-PS immersed in the water-ethanol solution of AgNO3, while the inner pore walls were covered by smaller, 10-30 nm diameter, silver nanoparticles. Upon introducing the hydrofluoric acid to the reaction mixture, the size of nanoparticles grown on the pore walls increased up to 100-150 nm. Such nanostructures were found to yield SERS-signal intensities from CuTMpyP4 analyte molecules of the same order to those obtained from silvered mesoporous silicon reported previously. The tested storage stability for the silvered macro-PS-based samples reached up to 8 months. However, degradation of the SERS intensity under illumination by the laser beam during spectral measurements was observed. To improve the stability of the SERS-signal a hybrid structure involving graphene oxide deposited on the top of analyte molecules adsorbed on the Ag/macro-PS was formed. A systematic observation of the time evolution of the characteristic peak at 1365 cm-1 showed that the addition of the oxidized graphene layer over the analyte results in ∼2 times slower decay of the Raman intensity, indicating that the graphene coating can be used to enhance the stability of the SERS-signal from the CuTMpyP4 molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...