Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Hematol Oncol ; 16(1): 31, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36978147

ABSTRACT

Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.


Subject(s)
Clinical Relevance , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Mutagenesis , Mutation , Peptides , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Tumor Microenvironment , APOBEC Deaminases/genetics
2.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Article in English | MEDLINE | ID: mdl-35835913

ABSTRACT

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Subject(s)
COVID-19 , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Alleles , COVID-19/genetics , Hospitalization , Humans , SARS-CoV-2/genetics
3.
Front Immunol ; 12: 692263, 2021.
Article in English | MEDLINE | ID: mdl-34497603

ABSTRACT

IFNL3/IFNL4 polymorphisms are inversely associated with the risk of chronic hepatitis C virus (HCV) infection and cirrhosis, two major risk factors for developing hepatocellular carcinoma (HCC). To further explore these inverse associations and their molecular underpinnings, we analyzed IFNL3/IFNL4 polymorphisms represented by the IFNL4 genotype (presence of rs368234815-dG or rs12979860-T alleles) in HCV patients: 2969 from Japan and 2931 from Taiwan. IFNL4 genotype was associated with an increased risk of HCV-related HCC (OR=1.28, 95%CI=1.07-1.52, P=0.0058) in the general population of Japanese patients, but not in Taiwanese patients who achieved treatment-induced viral clearance. IFNL4 genotype was also associated with a decreased risk of cirrhosis (OR=0.66, 95%CI=0.46-0.93, P=0.018, in Taiwanese patients). We then engineered HepG2 cells to inducibly express IFN-λ4 in the presence or absence of interferon lambda receptor 1 (IFNLR1). Induction of IFN-λ4 resulted in its intracellular accumulation, mainly in lysosomes and late endosomes, and increased ER stress, leading to apoptosis and reduced proliferation. We identified the very-low-density lipoprotein receptor (VLDLR), which facilitates HCV entry into hepatocytes, as a transcript induced by IFN-λ4 but not IFN-λ3. Our results suggest that the molecular mechanisms underlying the anti-cirrhotic but pro-HCV associations observed for IFNL3/IFNL4 polymorphisms are, at least in part, contributed by intracellular accumulation of IFN-λ4 causing ER stress in hepatic cells.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Endoplasmic Reticulum Stress , Hepatitis C/metabolism , Interleukins/metabolism , Liver Cirrhosis/metabolism , Liver Neoplasms/metabolism , Liver/metabolism , Adult , Apoptosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Case-Control Studies , Cell Proliferation , Databases, Factual , Female , Genetic Predisposition to Disease , Hep G2 Cells , Hepatitis C/genetics , Hepatitis C/virology , Humans , Interferons/genetics , Interleukins/genetics , Japan , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/prevention & control , Liver Cirrhosis/virology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Male , Middle Aged , Phenotype , Polymorphism, Genetic , Protective Factors , Risk Assessment , Risk Factors , Taiwan
4.
medRxiv ; 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34282422

ABSTRACT

Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-λ1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1 . We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.

5.
Nat Genet ; 52(12): 1283-1293, 2020 12.
Article in English | MEDLINE | ID: mdl-33077916

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, transcriptionally independent truncated isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In The Cancer Genome Atlas, the expression of dACE2 was enriched in squamous tumors of the respiratory, gastrointestinal and urogenital tracts. In vitro, dACE2, which lacks 356 amino-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, an inflammatory tumor microenvironment or viral co-infections is unlikely to increase the cellular entry of SARS-CoV-2 and promote infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Interferons/metabolism , RNA Viruses/physiology , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/genetics , Cell Line , Enzyme Induction , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Receptors, Coronavirus/genetics , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/metabolism
6.
Lancet Haematol ; 7(10): e715-e723, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32976751

ABSTRACT

BACKGROUND: The interferon lambda 4 gene (IFNL4) regulates immune responses by controlling the production of IFNλ4, a type III interferon. We hypothesised that IFNλ4 could play a role in infection clearance or alloreactivity in patients with acute leukaemia who received a myeloablative 10/10 HLA-matched haematopoietic stem-cell transplantation (HSCT). Therefore, we aimed to assess the association between recipient and donor IFNL4 genotype with post-HSCT survival outcomes in patients with acute leukaemia. METHODS: We did a two-stage retrospective cohort study using the Center for International Blood and Marrow Transplant Research (CIBMTR) repository and database, in which nearly all patients underwent the procedure in the USA. We included patients with acute myeloid leukaemia or acute lymphocytic leukaemia, who received a HSCT at any age from an unrelated 10/10 HLA-matched donor, with a myeloablative conditioning regimen, between Jan 1, 2000, and Dec 31, 2008, and had a pre-HSCT recipient or donor blood sample available. The discovery dataset included patients from an existing National Cancer Institute (NCI) cohort of the CIBMTR database, in which donor and recipient IFNL4 polymorphisms (rs368234815, rs12979860, and rs117648444) were genotyped with TaqMan assays. According to their genotype, donors and recipients were categorised into IFNL4-positive, if they had at least one copy of the allele that supports the production of IFNλ4, or IFNL4-null for the analyses. The findings were independently validated with patients from the DISCOVeRY-BMT cohort (validation dataset) with existing Illumina array genotype data. We also did a combined analysis using data from patients included in both the NCI and DISCOVeRY-BMT cohorts. FINDINGS: We assessed 404 patients (who had a HSCT from Jan 9, 2004, to Dec 26, 2008) in the discovery dataset and 1245 patients in the validation dataset (HSCT Jan 7, 2000, to Dec 26, 2008). The combined analysis included 1593 overlapping participants in both cohorts. Donor, but not recipient IFNL4-positive genotype was associated with increased risk of non-relapse mortality (HR 1·60, 95% CI 1·23-2·10; p=0·0005 in the discovery dataset; 1·22, 1·05-1·40; p=0·0072 in the validation dataset; and 1·27, 1·12-1·45; p=0·0001 in the combined dataset). Associations with post-HSCT overall survival were as follows: HR 1·24, 95% CI 1·02-1·51; p=0·034 in the discovery dataset; 1·10, 0·98-1·20; p=0·10 in the validation dataset; and 1·11, 1·02-1·22; p=0·018 in the combined dataset. INTERPRETATION: Prioritising HSCT donors with the IFNL4-null genotype might decrease non-relapse mortality and improve overall survival without substantially limiting the donor pool. If these findings are validated, IFNL4 genotype could be added to the donor selection algorithm. FUNDING: The National Cancer Institute Intramural Research Program. For full funding list see Acknowledgments.


Subject(s)
Hematopoietic Stem Cell Transplantation , Interleukins/genetics , Leukemia, Myeloid, Acute/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adult , Female , Genotype , Hematopoietic Stem Cell Transplantation/mortality , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Retrospective Studies , Treatment Outcome , Unrelated Donors , Young Adult
7.
bioRxiv ; 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32743577

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, primate-specific isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In vitro, dACE2, which lacks 356 N-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results reconcile current knowledge on ACE2 expression and suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, inflammatory tumor microenvironment, or viral co-infections is unlikely to affect the cellular entry of SARS-CoV-2 and promote infection.

8.
Cancer Res ; 80(13): 2718-2719, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32616506

ABSTRACT

Long noncoding RNAs (lncRNA) have been implicated in many diseases, including cancer. Although these disease-associated effects have been mostly attributed to the ability of lncRNAs to function as regulatory noncoding transcripts, there is growing evidence that lncRNAs may also encode functional micropeptides. In the current issue of Cancer Research, Wu and colleagues report a micropeptide encoded by a Y chromosome-linked lncRNA that may explain the higher incidence of esophageal cancer in male smokers. Furthermore, this report provides broader insights related to the molecular epidemiology of male-dominant and smoking-driven cancers and may also help explain some cancer-related associations with mosaic Y chromosome loss.See related article by Wu et al., p. 2790.


Subject(s)
Cigarette Smoking , Esophageal Neoplasms , RNA, Long Noncoding , Esophageal Squamous Cell Carcinoma , Humans , Male , RNA, Long Noncoding/genetics , Smoke , Y Chromosome
9.
Carcinogenesis ; 41(8): 1030-1037, 2020 08 12.
Article in English | MEDLINE | ID: mdl-31930332

ABSTRACT

Increased exposure to estrogen is associated with an elevated risk of breast cancer. Considering estrogen as a possible mutagen, we hypothesized that exposure to estrogen alone or in combination with the DNA-damaging chemotherapy drug, cisplatin, could induce expression of genes encoding enzymes involved in APOBEC-mediated mutagenesis. To test this hypothesis, we measured the expression of APOBEC3A (A3A) and APOBEC3B (A3B) genes in two breast cancer cell lines treated with estradiol, cisplatin or their combination. These cell lines, T-47D (ER+) and MDA-MB-231 (ER-), differed by the status of the estrogen receptor (ER). Expression of A3A was not detectable in any conditions tested, while A3B expression was induced by treatment with cisplatin and estradiol in ER+ cells but was not affected by estradiol in ER- cells. In The Cancer Genome Atlas, expression of A3B was significantly associated with genotypes of a regulatory germline variant rs17000526 upstream of the APOBEC3 cluster in 116 ER- breast tumors (P = 0.006) but not in 387 ER+ tumors (P = 0.48). In conclusion, we show that in breast cancer cell lines, A3B expression was induced by estradiol in ER+ cells and by cisplatin regardless of ER status. In ER+ breast tumors, the effect of estrogen may be masking the association of rs17000526 with A3B expression, which was apparent in ER- tumors. Our results provide new insights into the differential etiology of ER+ and ER- breast cancer and the possible role of A3B in this process through a mitogenic rather than the mutagenic activity of estrogen.


Subject(s)
Breast Neoplasms/genetics , Cytidine Deaminase/genetics , Estrogens/metabolism , Gene Expression Regulation, Neoplastic , Minor Histocompatibility Antigens/genetics , Mutagenesis , Receptors, Estrogen/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Estradiol/pharmacology , Glucose-6-Phosphate Isomerase , Humans , Proteins/genetics , Receptors, Estrogen/genetics
10.
Eur Urol ; 76(1): 9-13, 2019 07.
Article in English | MEDLINE | ID: mdl-30975452

ABSTRACT

FGFR3 is one of the most frequently mutated genes in bladder cancer and a driver of an oncogenic dependency. Here we report that only the most common recurrent FGFR3 mutation, S249C (TCC→TGC), represents an APOBEC-type motif and is probably caused by the APOBEC-mediated mutagenic process, accounting for its over-representation. We observed significant enrichment of the APOBEC mutational signature and overexpression of AID/APOBEC gene family members in bladder tumors with S249C compared to tumors with other recurrent FGFR3 mutations. Analysis of replication fork directionality suggests that the coding strand of FGFR3 is predominantly replicated as a lagging strand template that could favor the formation of hairpin structures, facilitating mutagenic activity of APOBEC enzymes. In vitro APOBEC deamination assays confirmed S249 as an APOBEC target. We also found that the FGFR3 S249C mutation was common in three other cancer types with an APOBEC mutational signature, but rare in urothelial tumors without APOBEC mutagenesis and in two diseases probably related to aging. PATIENT SUMMARY: We propose that APOBEC-mediated mutagenesis can generate clinically relevant driver mutations even within suboptimal motifs, such as in the case of FGFR3 S249C, one of the most common mutations in bladder cancer. Knowledge about the etiology of this mutation will improve our understanding of the molecular mechanisms of bladder cancer.


Subject(s)
APOBEC Deaminases/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Urinary Bladder Neoplasms/genetics , Aminohydrolases/genetics , Cytidine Deaminase/genetics , Humans , Minor Histocompatibility Antigens/genetics , Mutagenesis/genetics , Mutation , Neoplasm Invasiveness , Proteins/genetics , Sequence Analysis, RNA , Urinary Bladder Neoplasms/pathology
11.
Cell Rep ; 26(10): 2651-2666.e6, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30840888

ABSTRACT

Intratumor mutational heterogeneity has been documented in primary non-small-cell lung cancer. Here, we elucidate mechanisms of tumor evolution and heterogeneity in metastatic thoracic tumors (lung adenocarcinoma and thymic carcinoma) using whole-exome and transcriptome sequencing, SNP array for copy-number alterations (CNAs), and mass-spectrometry-based quantitative proteomics of metastases obtained by rapid autopsy. APOBEC mutagenesis, promoted by increased expression of APOBEC3 region transcripts and associated with a high-risk APOBEC3 germline variant, correlated with mutational tumor heterogeneity. TP53 mutation status was associated with APOBEC hypermutator status. Interferon pathways were enriched in tumors with high APOBEC mutagenesis and IFN-γ-induced expression of APOBEC3B in lung adenocarcinoma cells, suggesting that the immune microenvironment may promote mutational heterogeneity. CNAs occurring late in tumor evolution correlated with downstream transcriptomic and proteomic heterogeneity, although global proteomic heterogeneity was significantly greater than transcriptomic and CNA heterogeneity. These results illustrate key mechanisms underlying multi-dimensional heterogeneity in metastatic thoracic tumors.


Subject(s)
Cytidine Deaminase/genetics , Thoracic Neoplasms/genetics , APOBEC Deaminases , DNA Copy Number Variations , Genetic Heterogeneity , Germ-Line Mutation , Humans , Mutagenesis , Neoplasm Metastasis , Proteogenomics/methods , Thoracic Neoplasms/pathology
12.
Nat Genet ; 48(11): 1330-1338, 2016 11.
Article in English | MEDLINE | ID: mdl-27643540

ABSTRACT

High rates of APOBEC-signature mutations are found in many tumors, but factors affecting this mutation pattern are not well understood. Here we explored the contribution of two common germline variants in the APOBEC3 region. SNP rs1014971 was associated with bladder cancer risk, increased APOBEC3B expression, and enrichment with APOBEC-signature mutations in bladder tumors. In contrast, a 30-kb deletion that eliminates APOBEC3B and creates an APOBEC3A-APOBEC3B chimera was not important in bladder cancer, whereas it was associated with breast cancer risk and enrichment with APOBEC-signature mutations in breast tumors. In vitro, APOBEC3B expression was predominantly induced by treatment with a DNA-damaging drug in bladder cancer cell lines, and APOBEC3A expression was induced as part of the antiviral interferon-stimulated response in breast cancer cell lines. These findings suggest a tissue-specific role of environmental oncogenic triggers, particularly in individuals with germline APOBEC3 risk variants.


Subject(s)
Breast Neoplasms/genetics , Cytidine Deaminase/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Minor Histocompatibility Antigens/genetics , Mutation , Proteins/genetics , Urinary Bladder Neoplasms/genetics , Cell Line, Tumor , Chromosome Mapping , DNA, Neoplasm , DNA, Single-Stranded , Environment , Female , Humans , Male , Mutagenesis , Polymorphism, Single Nucleotide , Protein Isoforms , Risk Assessment , Survival Analysis
13.
Hum Mol Genet ; 25(6): 1203-14, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26732427

ABSTRACT

Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer.


Subject(s)
Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 20 , Urinary Bladder Neoplasms/genetics , White People/genetics , Biomarkers, Tumor/genetics , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Risk Factors , Urinary Bladder Neoplasms/ethnology
14.
J Natl Cancer Inst ; 107(11)2015 Nov.
Article in English | MEDLINE | ID: mdl-26374428

ABSTRACT

Few studies have demonstrated gene/environment interactions in cancer research. Using data on high-risk occupations for 2258 case patients and 2410 control patients from two bladder cancer studies, we observed that three of 16 known or candidate bladder cancer susceptibility variants displayed statistically significant and consistent evidence of additive interactions; specifically, the GSTM1 deletion polymorphism (P interaction ≤ .001), rs11892031 (UGT1A, P interaction = .01), and rs798766 (TMEM129-TACC3-FGFR3, P interaction = .03). There was limited evidence for multiplicative interactions. When we examined detailed data on a prevalent occupational exposure associated with increased bladder cancer risk, straight metalworking fluids, we also observed statistically significant additive interaction for rs798766 (TMEM129-TACC3-FGFR3, P interaction = .02), with the interaction more apparent in patients with tumors positive for FGFR3 expression. All statistical tests were two-sided. The interaction we observed for rs798766 (TMEM129-TACC3-FGFR3) with specific exposure to straight metalworking fluids illustrates the value of integrating germline genetic variation, environmental exposures, and tumor marker data to provide insight into the mechanisms of bladder carcinogenesis.


Subject(s)
Gene-Environment Interaction , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/etiology , Adult , Aged , Female , Gene Deletion , Genetic Predisposition to Disease , Germ-Line Mutation , Glucuronosyltransferase/genetics , Glutathione Transferase/genetics , Humans , Male , Metallurgy , Microtubule-Associated Proteins/genetics , Middle Aged , Occupational Diseases/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Risk Factors , Scotland/epidemiology , Surveys and Questionnaires , Ubiquitin-Protein Ligases/genetics , Urinary Bladder Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...