Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35336108

ABSTRACT

Hematopoietic stem/progenitor cells (HSPC) are responsible for the generation of most immune cells throughout the lifespan of the organism. Inflammation can activate bone marrow HSPCs, leading to enhanced myelopoiesis to replace cells, such as neutrophils, which are attracted to inflamed tissues. We have previously shown that HSPC activation promotes parasite persistence and expansion in experimental visceral leishmaniasis through the increased production of permissive monocytes. However, it is not clear if the presence of the parasite in the bone marrow was required for infection-adapted myelopoiesis. We therefore hypothesized that persistent forms of Leishmania major (cutaneous leishmaniasis) could also activate HSPCs and myeloid precursors in the C57Bl/6 mouse model of intradermal infection in the ear. The accrued influx of myeloid cells to the lesion site corresponded to an increase in myeloid-biased HSPCs in the bone marrow and spleen in mice infected with a persistent strain of L. major, together with an increase in monocytes and monocyte-derived myeloid cells in the spleen. Analysis of the bone marrow cytokine and chemokine environment revealed an attenuated type I and type II interferon response in the mice infected with the persistent strain compared to the self-healing strain, while both strains induced a rapid upregulation of myelopoietic cytokines, such as IL-1ß and GM-CSF. These results demonstrate that an active infection in the bone marrow is not necessary for the induction of infection-adapted myelopoiesis, and underline the importance of considering alterations to the bone marrow output when analyzing in vivo host-pathogen interactions.

2.
Stem Cells ; 39(9): 1207-1220, 2021 09.
Article in English | MEDLINE | ID: mdl-33882146

ABSTRACT

Although intracellular Wnt signaling pathways need to be tightly regulated to promote hematopoietic stem cell self-renewal, the source and identity of important Wnt ligands in the bone marrow is still largely unknown. The noncanonical ligand Wnt4 is expressed in the bone marrow as well as in the stroma, and its overexpression in fetal liver cells facilitates thymic recovery; however, its impact on adult hematopoietic stem cell function remains unclear. Here, we report that the deletion of Wnt4 from hematopoietic cells in mice (Wnt4Δ/Δ ) resulted in decreased lymphopoiesis at steady state. This was likely at least in part due to the increased proinflammatory environment present in the bone marrow of Wnt4Δ/Δ mice. Wnt4Δ/Δ hematopoietic stem cells displayed reduced reconstitution capacity in serial transplants, thus demonstrating defective self-renewal, and they expanded poorly in response to lipopolysaccharide stimulation. This appeared to be the result of the absence of Wnt4 in stem/progenitor cells, as myeloid-restricted Wnt4 deletion had no notable effect. Finally, we observed that Wnt4Δ/Δ stem/progenitor cells were more quiescent, presenting enhanced levels of stress-associated JNK phosphorylation and p16INK4a expression, likely contributing to the reduced expansion observed in transplants. In conclusion, our results identify a new, largely autocrine role for Wnt4 in hematopoietic stem cell self-renewal, suggesting that regulation of Wnt signaling in hematopoiesis may not need Wnt secretion and could be independent of morphogen gradients.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cell Transplantation , Animals , Cell Differentiation , Cell Self Renewal , Hematopoietic Stem Cells/metabolism , Lymphopoiesis , Mice , Wnt4 Protein/genetics , Wnt4 Protein/metabolism
3.
J Clin Med ; 9(2)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991630

ABSTRACT

The vasodilator-associated stimulated phosphoprotein (VASP) phosphorylation level is a highly specific method to assess P2Y12 receptor inhibition. Traditionally, VASP phosphorylation is analyzed by flow cytometry, which is laborious and restricted to specialized laboratories. Recently, a simple ELISA kit has been commercialized. The primary objective of this study was to compare the performance of VASP assessment by ELISA and flow cytometry in relation to functional platelet aggregation testing by Multiplate® whole-blood aggregometry. Blood from 24 healthy volunteers was incubated with increasing concentration of a P2Y12 receptor inhibitor (AR-C 66096). Platelet function testing was carried out simultaneously by Multiplate® aggregometry and by VASP assessment through ELISA and flow cytometry. As expected, increasing concentrations of the P2Y12 receptor inhibitor induced a proportional inhibition of platelet aggregation and P2Y12 receptor activation across the modalities. Platelet reactivity index values of both ELISA- and flow cytometry-based VASP assessment methods correlated strongly (r = 0.87, p < 0.0001) and showed minimal bias (1.05%). Correlation with Multiplate® was slightly higher for the flow cytometry-based VASP assay (r = 0.79, p < 0.0001) than for the ELISA-based assay (r = 0.69, p < 0.0001). Intraclass correlation (ICC) was moderate for all the assays tested (ICC between 0.62 and 0.84). However, categorization into low, optimal, or high platelet reactivity based on these assays was strongly concordant (κ between 0.86 and 0.92). In conclusion, the consensus-recommended assays with their standardized cut-offs should not be used interchangeably in multi-center clinical studies but, rather, they should be standardized throughout sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...