Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3516, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664367

ABSTRACT

Chemical cross-linking reactions (XL) are an important strategy for studying protein-protein interactions (PPIs), including low abundant sub-complexes, in structural biology. However, choosing XL reagents and conditions is laborious and mostly limited to analysis of protein assemblies that can be resolved using SDS-PAGE. To overcome these limitations, we develop here a denaturing mass photometry (dMP) method for fast, reliable and user-friendly optimization and monitoring of chemical XL reactions. The dMP is a robust 2-step protocol that ensures 95% of irreversible denaturation within only 5 min. We show that dMP provides accurate mass identification across a broad mass range (30 kDa-5 MDa) along with direct label-free relative quantification of all coexisting XL species (sub-complexes and aggregates). We compare dMP with SDS-PAGE and observe that, unlike the benchmark, dMP is time-efficient (3 min/triplicate), requires significantly less material (20-100×) and affords single molecule sensitivity. To illustrate its utility for routine structural biology applications, we show that dMP affords screening of 20 XL conditions in 1 h, accurately identifying and quantifying all coexisting species. Taken together, we anticipate that dMP will have an impact on ability to structurally characterize more PPIs and macromolecular assemblies, expected final complexes but also sub-complexes that form en route.


Subject(s)
Cross-Linking Reagents , Photometry , Protein Denaturation , Cross-Linking Reagents/chemistry , Photometry/methods , Proteins/chemistry , Proteins/metabolism , Electrophoresis, Polyacrylamide Gel/methods , Protein Interaction Mapping/methods , Mass Spectrometry/methods , Humans
2.
SLAS Discov ; 29(3): 100154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521503

ABSTRACT

Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale. Among the potential sorafenib targets, we identified aldehyde dehydrogenase 2 (ALDH2), an enzyme that plays a major role in alcohol metabolism. We validated the interaction of sorafenib with ALDH2 by orthogonal methods using pure recombinant protein, proving that this interaction is not mediated by other cellular components. Moreover, we showed that sorafenib inhibits ALDH2 activity, supporting a functional role for this interaction. Finally, we were able to demonstrate that both ALDH2 protein expression and activity were reduced in sorafenib-resistant cells compared to the parental cell line. Overall, our study allowed the identification of ALDH2 as a novel sorafenib target and sheds light on its potential role in both hepatocellular carcinoma and sorafenib resistance condition.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , Proteome , Sorafenib , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Protein Binding/drug effects
3.
J Biol Chem ; 300(3): 105767, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367672

ABSTRACT

Approximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology. Here, two FNMTC families were studied, each with two members affected with TC. Ninety-four hereditary cancer predisposition genes were analyzed through next-generation sequencing, revealing two germline CHEK2 missense variants (c.962A > C, p.E321A and c.470T > C, p.I157T), which segregated with TC in each FNMTC family. p.E321A, located in the CHK2 protein kinase domain, is a rare variant, previously unreported in the literature. Conversely, p.I157T, located in CHK2 forkhead-associated domain, has been extensively described, having conflicting interpretations of pathogenicity. CHK2 proteins (WT and variants) were characterized using biophysical methods, molecular dynamics simulations, and immunohistochemistry. Overall, biophysical characterization of these CHK2 variants showed that they have compromised structural and conformational stability and impaired kinase activity, compared to the WT protein. CHK2 appears to aggregate into amyloid-like fibrils in vitro, which opens future perspectives toward positioning CHK2 in cancer pathophysiology. CHK2 variants exhibited higher propensity for this conformational change, also displaying higher expression in thyroid tumors. The present findings support the utility of complementary biophysical and in silico approaches toward understanding the impact of genetic variants in protein structure and function, improving the current knowledge on CHEK2 variants' role in FNMTC genetic basis, with prospective clinical translation.


Subject(s)
Checkpoint Kinase 2 , Neoplastic Syndromes, Hereditary , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Checkpoint Kinase 2/chemistry , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Genetic Predisposition to Disease , Germ-Line Mutation , Neoplastic Syndromes, Hereditary/genetics , Prospective Studies , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Protein Domains , Male , Female , Middle Aged
4.
Biosensors (Basel) ; 13(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37887106

ABSTRACT

Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein-protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein-protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply.


Subject(s)
Drug Discovery , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Drug Discovery/methods , Proteins , Chromatography, Affinity , Protein Binding
5.
J Biol Chem ; 299(11): 105328, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806493

ABSTRACT

The receptor tyrosine kinase MET is activated by hepatocyte growth factor binding, followed by phosphorylation of the intracellular kinase domain (KD) mainly within the activation loop (A-loop) on Y1234 and Y1235. Dysregulation of MET can lead to both tumor growth and metastatic progression of cancer cells. Tepotinib is a highly selective, potent type Ib MET inhibitor and approved for treatment of non-small cell lung cancer harboring METex14 skipping alterations. Tepotinib binds to the ATP site of unphosphorylated MET with critical π-stacking contacts to Y1230 of the A-loop, resulting in a high residence time. In our study, we combined protein crystallography, biophysical methods (surface plasmon resonance, differential scanning fluorimetry), and mass spectrometry to clarify the impacts of A-loop conformation on tepotinib binding using different recombinant MET KD protein variants. We solved the first crystal structures of MET mutants Y1235D, Y1234E/1235E, and F1200I in complex with tepotinib. Our biophysical and structural data indicated a linkage between reduced residence times for tepotinib and modulation of A-loop conformation either by mutation (Y1235D), by affecting the overall Y1234/Y1235 phosphorylation status (L1195V and F1200I) or by disturbing critical π-stacking interactions with tepotinib (Y1230C). We corroborated these data with target engagement studies by fluorescence cross-correlation spectroscopy using KD constructs in cell lysates or full-length receptors from solubilized cellular membranes as WT or activated mutants (Y1235D and Y1234E/1235E). Collectively, our results provide further insight into the MET A-loop structural determinants that affect the binding of the selective inhibitor tepotinib.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proto-Oncogene Proteins c-met , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Mutation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Antineoplastic Agents/pharmacology
6.
J Mol Biol ; 434(19): 167760, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35901867

ABSTRACT

DPCD is a protein that may play a role in cilia formation and whose absence leads to primary ciliary dyskinesia (PCD), a rare disease caused by impairment of ciliated cells. Except for high-throughput studies that identified DPCD as a possible RUVBL1 (R1) and RUVBL2 (R2) partner, no in-depth cellular, biochemical, and structural investigation involving DPCD have been reported so far. R1 and R2 proteins are ubiquitous highly conserved AAA + family ATPases that assemble and mature a plethora of macromolecular complexes and are pivotal in numerous cellular processes, especially by guaranteeing a co-chaperoning function within R2TP or R2TP-like machineries. In the present study, we identified DPCD as a new R1R2 partner in vivo. We show that DPCD interacts directly with R1 and R2 in vitro and in cells. We characterized the physico-chemical properties of DPCD in solution and built a 3D model of DPCD. In addition, we used a variety of orthogonal biophysical techniques including small-angle X-ray scattering, structural mass spectrometry and electron microscopy to assess the molecular determinants of DPCD interaction with R1R2. Interestingly, DPCD disrupts the dodecameric state of R1R2 complex upon binding and this interaction occurs mainly via the DII domains of R1R2.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Carrier Proteins , DNA Helicases , Multiprotein Complexes , Proteins , ATPases Associated with Diverse Cellular Activities/chemistry , Carrier Proteins/chemistry , DNA Helicases/chemistry , Humans , Multiprotein Complexes/chemistry , Proteins/chemistry
7.
J Med Chem ; 65(13): 9206-9229, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35763499

ABSTRACT

The dysregulated Hippo pathway and, consequently, hyperactivity of the transcriptional YAP/TAZ-TEAD complexes is associated with diseases such as cancer. Prevention of YAP/TAZ-TEAD triggered gene transcription is an attractive strategy for therapeutic intervention. The deeply buried and conserved lipidation pocket (P-site) of the TEAD transcription factors is druggable. The discovery and optimization of a P-site binding fragment (1) are described. Utilizing structure-based design, enhancement in target potency was engineered into the hit, capitalizing on the established X-ray structure of TEAD1. The efforts culminated in the optimized in vivo tool MSC-4106, which exhibited desirable potency, mouse pharmacokinetic properties, and in vivo efficacy. In close correlation to compound exposure, the time- and dose-dependent downregulation of a proximal biomarker could be shown.


Subject(s)
Neoplasms , Transcription Factors , Animals , Mice , TEA Domain Transcription Factors , Transcription Factors/metabolism
8.
Cancers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439228

ABSTRACT

The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER+) subtypes. Directed therapy in early and advanced BC has dramatically changed the natural course of ER+ BC; however, relapse is a major clinical issue, and new therapeutic strategies are needed. Here, we report the development and characterization of a novel monoclonal antibody specific to DLL1. Using phage display technology, we selected an anti-DLL1 antibody fragment, which was converted into a full human IgG1 (Dl1.72). The Dl1.72 antibody exhibited DLL1 specificity and affinity in the low nanomolar range and significantly impaired DLL1-Notch signaling and expression of Notch target genes in ER+ BC cells. Functionally, in vitro treatment with Dl1.72 reduced MCF-7 cell proliferation, migration, mammosphere formation and endothelial tube formation. In vivo, Dl1.72 significantly inhibited tumor growth, reducing both tumor cell proliferation and liver metastases in a xenograft mouse model, without apparent toxicity. These findings suggest that anti-DLL1 Dl1.72 could be an attractive agent against ER+ BC, warranting further preclinical investigation.

9.
N Biotechnol ; 64: 17-26, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-33992842

ABSTRACT

Notch signalling is a well-established oncogenic pathway, and its ligand Delta-like 1 (DLL1) is overexpressed in estrogen receptor-positive (ER+) breast cancers and associated with poor patient prognosis. Hence, DLL1 has become an interesting therapeutic target for breast cancer. Here, the development of specific functional blocking anti-DLL1 antibodies with potential activity against ER+ breast cancer cells is reported. Human DLL1 proteins, containing the essential regions for binding to the Notch receptor and Notch signalling activation, were produced and used to select specific scFv antibody fragments by phage display. Fifteen unique scFvs were identified and reformatted into full IgGs. Characterization of these antibodies by ELISA, surface plasmon resonance and flow cytometry enabled selection of three specific anti-DLL1 IgGs, sharing identical VH regions, with nM affinities. Cellular assays on ER+ breast cancer MCF-7 cells showed that one of the IgGs (IgG-69) was able to partially impair DLL1-mediated activation of the Notch pathway, as determined by Notch reporter and RT-qPCR assays, and to attenuate cell growth. Treatment of MCF-7 cells with IgG-69 reduced mammosphere formation, suggesting that it decreases the breast cancer stem cell subpopulation. These results support the use of this strategy to develop and identify potential anti-DLL1 antibodies candidates against breast cancer.


Subject(s)
Breast Neoplasms , Calcium-Binding Proteins/immunology , Cell Surface Display Techniques , Immunoglobulin G/biosynthesis , Membrane Proteins/immunology , Female , Humans , Ligands , MCF-7 Cells
10.
Biotechnol Bioeng ; 118(6): 2202-2219, 2021 06.
Article in English | MEDLINE | ID: mdl-33624859

ABSTRACT

Serological assays are valuable tools to study SARS-CoV-2 spread and, importantly, to identify individuals that were already infected and would be potentially immune to a virus reinfection. SARS-CoV-2 Spike protein and its receptor binding domain (RBD) are the antigens with higher potential to develop SARS-CoV-2 serological assays. Moreover, structural studies of these antigens are key to understand the molecular basis for Spike interaction with angiotensin converting enzyme 2 receptor, hopefully enabling the development of COVID-19 therapeutics. Thus, it is urgent that significant amounts of this protein became available at the highest quality. In this study, we produced Spike and RBD in two human derived cell hosts: HEK293-E6 and Expi293F™. We evaluated the impact of different and scalable bioprocessing approaches on Spike and RBD production yields and, more importantly, on these antigens' quality attributes. Using negative and positive sera collected from human donors, we show an excellent performance of the produced antigens, assessed in serologic enzyme-linked immunosorbent assay (ELISA) tests, as denoted by the high specificity and sensitivity of the test. We show robust Spike productions with final yields of approx. 2 mg/L of culture that were maintained independently of the production scale or cell culture strategy. To the best of our knowledge, the final yield of 90 mg/L of culture obtained for RBD production, was the highest reported to date. An in-depth characterization of SARS-CoV-2 Spike and RBD proteins was performed, namely the antigen's oligomeric state, glycosylation profiles, and thermal stability during storage. The correlation of these quality attributes with ELISA performance show equivalent reactivity to SARS-CoV-2 positive serum, for all Spike and RBD produced, and for all storage conditions tested. Overall, we provide straightforward protocols to produce high-quality SARS-CoV-2 Spike and RBD antigens, that can be easily adapted to both academic and industrial settings; and integrate, for the first time, studies on the impact of bioprocess with an in-depth characterization of these proteins, correlating antigen's glycosylation and biophysical attributes to performance of COVID-19 serologic tests.


Subject(s)
Antigens, Viral/biosynthesis , Glycosylation , Spike Glycoprotein, Coronavirus/biosynthesis , Cold Temperature , Enzyme-Linked Immunosorbent Assay/standards , Freezing , HEK293 Cells , Humans , Protein Conformation , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/standards , SARS-CoV-2 , Serologic Tests/standards , Spike Glycoprotein, Coronavirus/standards
11.
Nucleic Acids Res ; 49(2): 1094-1113, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33367824

ABSTRACT

The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , Molecular Chaperones/metabolism , Nuclear Proteins/metabolism , Ribonucleoproteins, Small Nucleolar/biosynthesis , Adenosine Triphosphate/metabolism , Eye Proteins/metabolism , Gene Knockout Techniques , Genes, Reporter , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Multiprotein Complexes , Protein Domains , Protein Interaction Mapping , Proteomics/methods , Recombinant Fusion Proteins/metabolism , Ribonucleoproteins, Small Nucleolar/metabolism , Saccharomyces cerevisiae Proteins/metabolism
12.
RSC Chem Biol ; 1(4): 251-262, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-34458764

ABSTRACT

The bone marrow tyrosine kinase in chromosome X (BMX) is pursued as a drug target because of its role in various pathophysiological processes. We designed BMX covalent inhibitors with single-digit nanomolar potency with unexploited topological pharmacophore patterns. Importantly, we reveal the first X-ray crystal structure of covalently inhibited BMX at Cys496, which displays key interactions with Lys445, responsible for hampering ATP catalysis and the DFG-out-like motif, typical of an inactive conformation. Molecular dynamic simulations also showed this interaction for two ligand/BMX complexes. Kinome selectivity profiling showed that the most potent compound is the strongest binder, displays intracellular target engagement in BMX-transfected cells with two-digit nanomolar inhibitory potency, and leads to BMX degradation PC3 in cells. The new inhibitors displayed anti-proliferative effects in androgen-receptor positive prostate cancer cells that where further increased when combined with known inhibitors of related signaling pathways, such as PI3K, AKT and Androgen Receptor. We expect these findings to guide development of new selective BMX therapeutic approaches.

13.
Sci Rep ; 9(1): 684, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679627

ABSTRACT

Biosynthesis of hydrogen sulfide (H2S), a key signalling molecule in human (patho)physiology, is mostly accomplished by the human enzymes cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MST). Several lines of evidence have shown a close correlation between increased H2S production and human diseases, such as several cancer types and amyotrophic lateral sclerosis. Identifying compounds selectively and potently inhibiting the human H2S-synthesizing enzymes may therefore prove beneficial for pharmacological applications. Here, the human enzymes CBS, CSE and MST were expressed and purified from Escherichia coli, and thirty-one pyridine derivatives were synthesized and screened for their ability to bind and inhibit these enzymes. Using differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), circular dichroism spectropolarimetry (CD), and activity assays based on fluorimetric and colorimetric H2S detection, two compounds (C30 and C31) sharing structural similarities were found to weakly inhibit both CBS and CSE: 1 mM C30 inhibited these enzymes by approx. 50% and 40%, respectively, while 0.5 mM C31 accounted for CBS and CSE inhibition by approx. 40% and 60%, respectively. This work, while presenting a robust methodological platform for screening putative inhibitors of the human H2S-synthesizing enzymes, highlights the importance of employing complementary methodologies in compound screenings.


Subject(s)
Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine gamma-Lyase/antagonists & inhibitors , Hydrogen Sulfide/metabolism , Pyridines/pharmacology , Sulfurtransferases/antagonists & inhibitors , Circular Dichroism , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/metabolism , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fluorometry/methods , Humans , Methylene Blue , Pyridines/chemistry , Sulfurtransferases/metabolism , Surface Plasmon Resonance
14.
Sci Rep ; 8(1): 13726, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213962

ABSTRACT

RuvB-Like transcription factors function in cell cycle regulation, development and human disease, such as cancer and heart hyperplasia. The mechanisms that regulate adenosine triphosphate (ATP)-dependent activity, oligomerization and post-translational modifications in this family of enzymes are yet unknown. We present the first crystallographic structure of full-length human RuvBL2 which provides novel insights into its mechanistic action and biology. The ring-shaped hexameric RuvBL2 structure presented here resolves for the first time the mobile domain II of the human protein, which is responsible for protein-protein interactions and ATPase activity regulation. Structural analysis suggests how ATP binding may lead to domain II motion through interactions with conserved N-terminal loop histidine residues. Furthermore, a comparison between hsRuvBL1 and 2 shows differences in surface charge distribution that may account for previously described differences in regulation. Analytical ultracentrifugation and cryo electron microscopy analyses performed on hsRuvBL2 highlight an oligomer plasticity that possibly reflects different physiological conformations of the protein in the cell, as well as that single-stranded DNA (ssDNA) can promote the oligomerization of monomeric hsRuvBL2. Based on these findings, we propose a mechanism for ATP binding and domain II conformational change coupling.


Subject(s)
ATPases Associated with Diverse Cellular Activities/chemistry , Adenosine Triphosphate/chemistry , Carrier Proteins/chemistry , DNA Helicases/chemistry , Macromolecular Substances/chemistry , Protein Structure, Tertiary , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/ultrastructure , Adenosine Triphosphate/genetics , Amino Acid Sequence/genetics , Binding Sites/genetics , Carrier Proteins/genetics , Carrier Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , DNA Helicases/genetics , DNA Helicases/ultrastructure , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Humans , Macromolecular Substances/ultrastructure , Protein Binding
15.
Biochemistry ; 57(36): 5271-5281, 2018 09 11.
Article in English | MEDLINE | ID: mdl-29939726

ABSTRACT

Superoxide reductases (SORs) are enzymes that detoxify the superoxide anion through its reduction to hydrogen peroxide and exist in both prokaryotes and eukaryotes. The substrate is transformed at an iron catalytic center, pentacoordinated in the ferrous state by four histidines and one cysteine. SORs have a highly conserved motif, (E)(K)HxP-, in which the glutamate is associated with a redox-driven structural change, completing the octahedral coordination of the iron in the ferric state, whereas the lysine may be responsible for stabilization and donation of a proton to catalytic intermediates. We aimed to understand at the structural level the role of these two residues, by determining the X-ray structures of the SORs from the hyperthermophilic archaea Ignicoccus hospitalis and Nanoarchaeum equitans that lack the quasi-conserved lysine and glutamate, respectively, but have catalytic rate constants similar to those of the canonical enzymes, as we previously demonstrated. Furthermore, we have determined the crystal structure of the E23A mutant of I. hospitalis SOR, which mimics several enzymes that lack both residues. The structures revealed distinct structural arrangements of the catalytic center that simulate several catalytic cycle intermediates, namely, the reduced and the oxidized forms, and the glutamate-free and deprotonated ferric forms. Moreover, the structure of the I. hospitalis SOR provides evidence for the presence of an alternative lysine close to the iron center in the reduced state that may be a functional substitute for the "canonical" lysine.


Subject(s)
Archaeal Proteins/chemistry , Desulfurococcaceae/enzymology , Nanoarchaeota/enzymology , Oxidoreductases/chemistry , Superoxides/chemistry , Amino Acid Sequence , Archaeal Proteins/metabolism , Catalysis , Cryoprotective Agents , Crystallization , Crystallography, X-Ray , Oxidation-Reduction , Oxidoreductases/metabolism , Protein Conformation , Sequence Homology , Superoxides/metabolism
16.
Nat Commun ; 9(1): 2093, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844425

ABSTRACT

R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Testis/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Antigens, Surface/metabolism , Apoptosis Regulatory Proteins/genetics , Carrier Proteins/genetics , Cell Line , GTP-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Male , Membrane Proteins/metabolism , Protein Binding , Protein Folding , Protein Structure, Secondary , Signal Transduction
17.
Protein Expr Purif ; 146: 8-16, 2018 06.
Article in English | MEDLINE | ID: mdl-29366964

ABSTRACT

Notch signalling is an evolutionary conserved cell-to-cell communication pathway crucial for development and tissue homeostasis. Abnormal Notch signalling by mutations or deregulated expression of its receptors and/or ligands can lead to cancer making it a potential therapeutic target. Delta-like1 (DLL1) is a ligand of the Notch pathway implicated in different types of cancer, including breast cancer. Herein, we produced rhDLL1-DE3, a novel soluble form of DLL1 protein, which contains the DSL domain and EGF1-3 repeats critical for Notch pathway activation. cDNA fragments of human DLL1, encoding truncated versions of DLL1 with regions required to activate Notch receptors, were cloned and expressed as histidine-fused proteins in bacterial and mammalian cells. Expression tests in mammalian cells showed almost exclusively expression of the rhDLL1-DE3 protein form comprising the minimal binding regions DSL to EGF3 to Notch receptors. The highest yield of rhDLL1-DE3 was obtained from E. coli inclusion bodies. The produced protein, with purity higher than 95% bound to human Notch1 recombinant protein, by both Biolayer interferometry and ELISA assays. Cellular assays revealed rhDLL1-DE3 was biologically active as it increased expression of Notch-dependent genes in inducible pluripotent and breast cancer cells. Moreover, rhDLL1-DE3 allowed the generation of polyclonal antibodies by immunization that efficiently recognized DLL1 proteins by immunoblot, and caused a significant decrease of Notch1 expression in MCF7 breast cancer cells. The rhDLL1-DE3 protein might thus be used for Notch pathway activation and to generate anti-DLL1 monoclonal antibodies by immunization or phage display technology to unveil the effect of DLL1 in breast cancer.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptor, Notch1/metabolism , Receptors, Notch/metabolism , Signal Transduction , Antibodies/immunology , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Calcium-Binding Proteins , Cell Line , Female , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/immunology , MCF-7 Cells , Membrane Proteins/chemistry , Membrane Proteins/immunology , Models, Molecular , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
18.
Oxid Med Cell Longev ; 2017: 8940321, 2017.
Article in English | MEDLINE | ID: mdl-28421128

ABSTRACT

The human disease classical homocystinuria results from mutations in the gene encoding the pyridoxal 5'-phosphate- (PLP-) dependent cystathionine ß-synthase (CBS), a key enzyme in the transsulfuration pathway that controls homocysteine levels, and is a major source of the signaling molecule hydrogen sulfide (H2S). CBS activity, contributing to cellular redox homeostasis, is positively regulated by S-adenosyl-L-methionine (AdoMet) but fully inhibited upon CO or NO• binding to a noncatalytic heme moiety. Despite extensive studies, the molecular basis of several pathogenic CBS mutations is not yet fully understood. Here we found that the ferrous heme of the reportedly mild p.P49L CBS variant has altered spectral properties and markedly increased affinity for CO, making the protein much more prone than wild type (WT) CBS to inactivation at physiological CO levels. The higher CO affinity could result from the slightly higher flexibility in the heme surroundings revealed by solving at 2.80-Å resolution the crystallographic structure of a truncated p.P49L. Additionally, we report that p.P49L displays impaired H2S-generating activity, fully rescued by PLP supplementation along the purification, despite a minor responsiveness to AdoMet. Altogether, the results highlight how increased propensity to CO inactivation of an otherwise WT-like variant may represent a novel pathogenic mechanism in classical homocystinuria.


Subject(s)
Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/metabolism , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Crystallography, X-Ray , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/genetics , Heme/chemistry , Heme/metabolism , Humans , Kinetics , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , S-Adenosylmethionine/metabolism
19.
Mol Cell ; 65(5): 900-916.e7, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28238654

ABSTRACT

Protein post-translation modification plays an important role in regulating DNA repair; however, the role of arginine methylation in this process is poorly understood. Here we identify the arginine methyltransferase PRMT5 as a key regulator of homologous recombination (HR)-mediated double-strand break (DSB) repair, which is mediated through its ability to methylate RUVBL1, a cofactor of the TIP60 complex. We show that PRMT5 targets RUVBL1 for methylation at position R205, which facilitates TIP60-dependent mobilization of 53BP1 from DNA breaks, promoting HR. Mechanistically, we demonstrate that PRMT5-directed methylation of RUVBL1 is critically required for the acetyltransferase activity of TIP60, promoting histone H4K16 acetylation, which facilities 53BP1 displacement from DSBs. Interestingly, RUVBL1 methylation did not affect the ability of TIP60 to facilitate ATM activation. Taken together, our findings reveal the importance of PRMT5-mediated arginine methylation during DSB repair pathway choice through its ability to regulate acetylation-dependent control of 53BP1 localization.


Subject(s)
Carrier Proteins/metabolism , DNA Breaks, Double-Stranded , DNA Helicases/metabolism , Histone Acetyltransferases/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Recombinational DNA Repair , ATPases Associated with Diverse Cellular Activities , Acetylation , Animals , Arginine , Ataxia Telangiectasia Mutated Proteins/metabolism , Carrier Proteins/genetics , DNA Helicases/genetics , Genomic Instability , HEK293 Cells , HeLa Cells , Histone Acetyltransferases/genetics , Histones/metabolism , Humans , Lysine Acetyltransferase 5 , Methylation , Mice , Mice, Transgenic , Protein-Arginine N-Methyltransferases/genetics , RNA Interference , Time Factors , Transfection , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
20.
J Mol Biol ; 428(23): 4686-4707, 2016 11 20.
Article in English | MEDLINE | ID: mdl-27725182

ABSTRACT

Flavodiiron proteins (FDPs) are present in organisms from all domains of life and have been described so far to be involved in the detoxification of oxygen or nitric oxide (NO), acting as O2 and/or NO reductases. The Escherichia coli FDP, named flavorubredoxin (FlRd), is the most extensively studied FDP. Biochemical and in vivo studies revealed that FlRd is involved in NO detoxification as part of the bacterial defense mechanisms against reactive nitrogen species. E. coli FlRd has a clear preference for NO as a substrate in vitro, exhibiting a very low reactivity toward O2. To contribute to the understanding of the structural features defining this substrate selectivity, we determined the crystallographic structure of E. coli FlRd, both in the isolated and reduced states. The overall tetrameric structure revealed a highly conserved flavodiiron core domain, with a metallo-ß-lactamase-like domain containing a diiron center, and a flavodoxin domain with a flavin mononucleotide cofactor. The metal center in the oxidized state has a µ-hydroxo bridge coordinating the two irons, while in the reduced state, this moiety is not detected. Since only the flavodiiron domain was observed in these crystal structures, the structure of the rubredoxin domain was determined by NMR. Tunnels for the substrates were identified, and through molecular dynamics simulations, no differences for O2 or NO permeation were found. The present data represent the first structure for a NO-selective FDP.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Oxidoreductases/chemistry , Transcription Factors/chemistry , Crystallography, X-Ray , Escherichia coli Proteins/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism , Protein Conformation , Protein Multimerization , Substrate Specificity , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...