Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 348: 126785, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35114367

ABSTRACT

The performance of ultrasonic treatment was assessed under different hydrostatic pressures for two different waste activated sludges. The impact of pressurized sonication was evaluated based on the degree of disintegration (DDCOD) and the specific methane yield (SMY). An enhancement of DDCOD was observed at an intermediate pressure level (max. 53% at 1.0 bar), but at higher pressure levels (up to 3.5 bar), the enhancement was not as pronounced as for the intermediate ranges (max. 11%). In contrast to DDCOD, SMY increased with increasing pressure for both sludge samples tested (max 17% at 3.5 bar) so that SMY did not show a notable correlation with DDCOD. A positive energy balance (max. 167%) considering the energy input for ultrasonication and the additional methane generated was only achieved in samples treated under elevated hydrostatic pressure. Since this can be achieved with negligible effort, the enhancement can be considered as "methane for free".


Subject(s)
Sewage , Ultrasonics , Anaerobiosis , Hydrostatic Pressure , Methane , Sonication , Waste Disposal, Fluid
2.
Ultrason Sonochem ; 68: 105223, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32540730

ABSTRACT

The impact of ultrasound (US) reactor design on cavitation intensity distribution and disintegration efficiency was studied for sewage sludge pre-treatment, using a US flatbed reactor of variable reaction chamber height (RCH, 20-100 mm). Mapping of cavitation intensity and treatment effects was conducted using (i) hydrophone measurements, (ii) aluminum foil tests, and (iii) soluble chemical oxygen demand (COD) analyses. The overall disintegration efficiency was evaluated based on average COD solubilization. The impact of flow on treatment (in)homogeneity was additionally examined using computational fluid dynamics (CFD). Results of all measurement techniques suggest that small RCHs (20 mm, for instance) enable uniform and intense treatments, while large RCHs, which are subjected to strong sound wave attenuation, entail inhomogeneous treatments where large fractions of substrate are no longer exposed to notable cavitation activity. For instance, COD solubilization (relative to alkaline hydrolysis) measured in the channel center dropped from 6.4% to zero as RCH widened from 20 mm to 100 mm. Flow-through sonication further aggravates treatment inhomogeneity due to the high flow rates in the low-cavitation channel centers. Overall disintegration efficiency declined with increasing RCH, showing a drop in average COD solubilization by 73% from RCH = 20 mm to RCH = 100 mm. The drop correlated with average cavitation noise levels (R2 = 0.82), indicating that hydrophone measurements may be a suitable tool for US reactor design optimization. Overall, results suggest that reactor geometry has a critical impact on both treatment (in)homogeneity and treatment efficiency and that equal specific energy inputs do not imply equal US treatments.


Subject(s)
Sewage/chemistry , Sonication , Viscosity
3.
Ultrason Sonochem ; 64: 105001, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32045834

ABSTRACT

The effectiveness of tube and sonotrode reactors for the sonication of sewage sludge under identical conditions was compared for the first time. Despite the considerable structural differences, sonication with each ultrasonic reactor led to an accelerated degradation rate and an increased methane production within the first five days for the majority of the sewage sludge samples tested. On closer examination, however, it becomes clear that the investigated sonication systems are not equally suitable for the substrates considered. While the use of a sonotrode proved to be particularly advantageous for the treatment of waste activated sludge (+25% methane yield at 300 kJ/kgTS), the use of a 2-inch tube reactor achieved the highest enhancement for low-intensity sonication in digested sludge (+22% methane yield at 300 kJ/kgTS). With increasing energy input, more chemical oxygen demand was solubilized, but this did not result in an increase in methane yield for all samples. Sonication of waste activated sludge led to a significant reduction in viscosity of up to 50%, and a reduction of up to 60% was observed after sonication of digested sludge with low energy inputs. The study, therefore, demonstrates that the choice of the most suitable sonication system essentially depends on the properties of the sludge to be sonicated.

4.
Ultrason Sonochem ; 55: 217-222, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30712849

ABSTRACT

The fluid dynamics of water, thickened waste activated sludge (WAS, total solids concentration 4.4%) and digested sludge (DS, total solids concentration 2.5%) within a lab-scale ultrasonic flatbed reactor were experimentally investigated. For a visual observation of the opaque sludge flow, sewage sludges were approximated by transparent xanthan solutions with identical flow behavior. The visualization of the flow was realized by use of an ultrasonic reactor with a transparent panel and dye streams injected into the flow. Without ultrasonic treatment, xanthan solutions showed distinct laminar flow behavior (generalized Reynolds numbers < 1), at a flow rate of 100 L/h. In water, dye streams remained coherent as well, but with slightly unsteady features (Reynolds number ∼ 350). Activation of the ultrasound reactor caused strong fluid dynamic disturbance in the water flow and dye streams were dissolved instantly, thus indicating turbulent mixing. For the xanthan solutions, however, mixing was considerably less pronounced. The dye streams in the DS substitute (0.5% xanthan solution) remained overall in laminar shape, but exhibited an eruption-like branching and an increase in diameter with advancing treatment duration. For the solution resembling WAS (2.0% xanthan solution), only weak dye stream disruption was observed, thus indicating that WAS flow in flatbed reactors is nearly laminar during ultrasonic treatment.

5.
Bioresour Technol ; 264: 298-305, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29857284

ABSTRACT

The performance of a novel ultrasonic flatbed reactor for sewage sludge pre-treatment was assessed for three different waste activated sludges. The study systematically investigated the impact of specific energy input (200 - 3,000 kJ/kgTS) on the degree of disintegration (DDCOD, i.e. ratio between ultrasonically and maximum chemically solubilized COD) and methane production enhancement. Relationship between DDCOD and energy input was linear, for all sludges tested. Methane yields were significantly increased for both low (200 kJ/kgTS) and high (2,000 - 3,000 kJ/kgTS) energy inputs, while intermediate inputs (400 - 1,000 kJ/kgTS) showed no significant improvement. High inputs additionally accelerated reaction kinetics, but were limited to similar gains as low inputs (max. 12%), despite the considerably higher DDCOD values. Energy balance was only positive for 200 kJ/kgTS-treatments, with a maximum energy recovery of 122%. Results suggest that floc deagglomeration rather than cell lysis (DDCOD=1% - 5% at 200 kJ/kgTS) is the key principle of energy-positive sludge sonication.


Subject(s)
Sewage , Sonication , Waste Disposal, Fluid , Kinetics , Methane , Ultrasonics
6.
Ultrason Sonochem ; 42: 672-678, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29429716

ABSTRACT

The generation of cavitation fields for the pre-treatment of anaerobic sludge was studied by means of a novel acoustic measuring system. The influence of different reactor dimensions (i.e., choosing reaction chamber widths of 40, 60 and 80 mm) on the cavitation intensity was determined at various solid contents, flow rates and static pressures. Results suggest that the cavitation intensity is significantly reduced by the sonication of liquids with a high solid content. By increasing the pressure to 1 bar, the intensity of bubble implosions can be enhanced and the sound attenuation in the solid fraction is partly compensated compared to ambient pressure. However, a further increase in pressure to 2 bars has a detrimental effect due to the suppression of powerful bubbles. A reduction of the reactor gap permits an intensification of the treatment of waste activated sludge (WAS) by concentrating the ultrasound power from 6 to 18 dB. This effect is less relevant in digested sludge (DS) with its markedly lower total solids content (2.2% vs. 6.9% of solids in WAS). Increasing the flow rate, resulting in a flow velocity of up to 7 m/min, has no influence on the cavitation intensity. By adapting the reactor design and the static pressure to the substrate characteristics, the intensity of the sonication can be notably improved. This allows the design of sonication devices that are suitable for the intensive treatment of wastewater sludge.

SELECTION OF CITATIONS
SEARCH DETAIL
...