Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
ACS Omega ; 5(5): 2159-2168, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32064376

ABSTRACT

Genetic mutations in Duchenne muscular dystrophy (DMD) gene affecting the expression of dystrophin protein lead to a number of muscle disorders collectively called dystrophinopathies. In addition to muscle dystrophin, mutations in brain-specific dystrophin isoforms, in particular those that are expressed in the brain cortex and Purkinje neurons, result in cognitive impairment associated with DMD. These isoforms carry minor variations in the flanking region of the N-terminal actin-binding domain (ABD1) of dystrophin, which is composed of two calponin-homology (CH) domains in tandem. Determining the effect of these sequence variations is critical for understanding the mechanisms that govern varied symptoms of the disease. We studied the impact of differences in the N-terminal flanking region on the structure and function of dystrophin tandem CH domain isoforms. The amino acid changes did not affect the global structure of the protein but drastically affected the thermodynamic stability, with the muscle isoform more stable than the brain and Purkinje isoforms. Actin binding investigated with actin from different sources (skeletal muscle, smooth muscle, cardiac muscle, and platelets) revealed that the muscle isoform binds to filamentous actin (F-actin) with a lower affinity compared to the brain and Purkinje isoforms, and a similar trend was observed with actin from different sources. In addition, all isoforms showed a higher affinity to smooth muscle actin in comparison to actin from other sources. In conclusion, tandem CH domain isoforms might be using minor sequence variations in the N-terminal flanking regions to modulate their thermodynamic stability and actin-binding function, thus leading to specificity in dystrophin-actin interactions in various tissues.

2.
J Pharm Sci ; 109(4): 1439-1448, 2020 04.
Article in English | MEDLINE | ID: mdl-31954724

ABSTRACT

Filling pump operation is an important cause of particle formation in therapeutic protein formulations. The goals of the present study were to investigate the impacts of peristaltic filling pump tubing type, pump operating parameters (acceleration and velocity), and formulation on both nanoparticle and microparticle formation in water, placebo, and a 120 mg/mL mAb drug formulation. Microparticles were quantified using flow imaging microscopy and light obscuration, and nanoparticles were counted with nanoparticle tracking analysis. Pumping of all solutions through Pharmed® tubing resulted in much higher particle levels than processing with Accusil™ or Masterflex® tubing. Pump acceleration did not measurably affect particle levels in pumped solutions, but in some cases, a relatively high pumping velocity of 400 rpm enhanced nanoparticle formation. The presence of surfactants reduced pumping-induced particle formation in the mAb solution, and the effects of 4 different surfactants tested were similar. Biophysical properties (secondary and tertiary structure, and thermal stability) of the protein in solution were not altered by pumping. Overall, this study demonstrates that investigations of pumping parameters and formulations using both nanoparticle and microparticle measurement methods are important for understanding pumping-induced particle formation and developing effective control strategies.


Subject(s)
Nanoparticles , Surface-Active Agents , Particle Size
3.
Mol Pharm ; 16(11): 4621-4635, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31483994

ABSTRACT

Two of the most common forms of chemical modifications that compromise the efficacy of therapeutic proteins are the deamidation of asparagine residues and oxidation of methionine residues. We probed how deamidation affects the structure, stability, aggregation, and function of interferon alpha-2a (IFNA2a), and compared with our earlier results on methionine oxidation. Upon deamidation, no significant changes were observed in the global secondary structure of IFNA2a with minor changes in its tertiary structure. However, deamidation destabilized the protein, and increased its propensity to aggregate under accelerated stress conditions. Cytopathic inhibition and antiproliferation assays showed drastic decrease in the functionality of deamidated IFNA2a compared to the wild-type. 2D NMR measurements showed structural changes in local protein regions, with no effect on the overall global structure of IFNA2a. These local protein regions corresponded well with the aggregation hot-spots predicted by computational programs, and the functional hot-spots identified by site-directed mutagenesis. When compared to the effects of methionine oxidation, deamidation caused lesser aggregation, because of lesser structural unfolding observed in aggregation hot-spots by 2D NMR. In comparison to oxidation, deamidation showed larger decrease in function, because deamidation affected key amino acid residues in functional hot-spots as observed by 2D NMR and structural modeling. Such quantitative comparison between the effects of deamidation and oxidation on a pharmaceutical protein has not been done before, and the high-resolution structural information on local protein regions obtained by 2D NMR provided a better insight compared to low-resolution methods that probe global protein structure.


Subject(s)
Asparagine/chemistry , Methionine/chemistry , Amino Acids/chemistry , Interferon alpha-2/chemistry , Magnetic Resonance Imaging/methods , Mutagenesis, Site-Directed/methods , Oxidation-Reduction/drug effects , Protein Structure, Secondary
4.
J Pharm Sci ; 106(12): 3486-3498, 2017 12.
Article in English | MEDLINE | ID: mdl-28843351

ABSTRACT

We examined how polysorbate 20 (PS20; Tween 20) and polysorbate 80 (PS80; Tween 80) affect the higher-order structure of a monoclonal antibody (mAb) and its antigen-binding (Fab) and crystallizable (Fc) fragments, using near-UV circular dichroism and 2D nuclear magnetic resonance (NMR). Both polysorbates bind to the mAb with submillimolar affinity. Binding causes significant changes in the tertiary structure of mAb with no changes in its secondary structure. 2D 13C-1H methyl NMR indicates that with increasing concentration of polysorbates, the Fab region showed a decrease in crosspeak volumes. In addition to volume changes, PS20 caused significant changes in the chemical shifts compared to no changes in the case of PS80. No such changes in crosspeak volumes or chemical shifts were observed in the case of Fc region, indicating that polysorbates predominantly affect the Fab region compared to the Fc region. This differential effect of polysorbates on the Fab and Fc regions was because of the lesser thermodynamic stability of the Fab compared to the Fc. These results further indicate that PS80 is the preferred polysorbate for this mAb formulation, because it offers higher protection against aggregation, causes lesser structural perturbation, and has weaker binding affinity with fewer binding sites compared to PS20.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fc Fragments/chemistry , Polysorbates/chemistry , Binding Sites/drug effects , Circular Dichroism , Magnetic Resonance Spectroscopy/methods , Surface-Active Agents/chemistry , Thermodynamics
5.
Biochemistry ; 56(20): 2627-2636, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28443334

ABSTRACT

Despite sharing a high degree of sequence similarity, the tandem calponin-homology (CH) domain of utrophin binds to actin 30 times stronger than that of dystrophin. We have previously shown that this difference in actin binding affinity could not be ascribed to the differences in inter-CH-domain linkers [Bandi, S., et al. (2015) Biochemistry 54, 5480-5488]. Here, we examined the role of the N-terminal flanking region. The utrophin tandem CH domain contains a 27-residue flanking region before its CH1 domain. We examined its effect by comparing the structure and function of full-length utrophin tandem CH domain Utr(1-261) and its truncated Utr(28-261) construct. Both full-length and truncated constructs are monomers in solution, with no significant differences in their secondary or tertiary structures. Truncated construct Utr(28-261) binds to actin 30 times weaker than that of the full-length Utr(1-261), similar to that of the dystrophin tandem CH domain with a much shorter flanking region. Deletion of the N-terminal flanking region stabilizes the CH1 domain. The magnitude of the change in binding free energy upon truncation is similar to that of the change in thermodynamic stability. The isolated N-terminal peptide by itself is significantly random coil and does not bind to F-actin in the affinity range of Utr(1-261) and Utr(28-261). These results indicate that the N-terminal flanking region significantly affects the actin binding affinity of tandem CH domains. This observation further stresses that protein regions other than the three actin-binding surfaces identified earlier, irrespective of whether they directly bind to actin, also contribute to the actin binding affinity of tandem CH domains.


Subject(s)
Actins/metabolism , Calcium-Binding Proteins/chemistry , Microfilament Proteins/chemistry , Utrophin/metabolism , Actins/chemistry , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics , Utrophin/chemistry , Calponins
6.
Biochemistry ; 54(46): 6942-50, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26516677

ABSTRACT

Dystrophin and utrophin are two muscle proteins involved in Duchenne/Becker muscular dystrophy. Both proteins use tandem calponin-homology (CH) domains to bind to F-actin. We probed the role of N-terminal CH1 and C-terminal CH2 domains in the structure and function of dystrophin tandem CH domain and compared with our earlier results on utrophin to understand the unifying principles of how tandem CH domains work. Actin cosedimentation assays indicate that the isolated CH2 domain of dystrophin weakly binds to F-actin compared to the full-length tandem CH domain. In contrast, the isolated CH1 domain binds to F-actin with an affinity similar to that of the full-length tandem CH domain. Thus, the obvious question is why the dystrophin tandem CH domain requires CH2, when its actin binding is determined primarily by CH1. To answer, we probed the structural stabilities of CH domains. The isolated CH1 domain is very unstable and is prone to serious aggregation. The isolated CH2 domain is very stable, similar to the full-length tandem CH domain. These results indicate that the main role of CH2 is to stabilize the tandem CH domain structure. These conclusions from dystrophin agree with our earlier results on utrophin, indicating that this phenomenon of differential contribution of CH domains to the structure and function of tandem CH domains may be quite general. The N-terminal CH1 domains primarily determine the actin binding function whereas the C-terminal CH2 domains primarily determine the structural stability of tandem CH domains, and the extent of stabilization depends on the strength of inter-CH domain interactions.


Subject(s)
Calcium-Binding Proteins/chemistry , Dystrophin/chemistry , Microfilament Proteins/chemistry , Utrophin/chemistry , Actins/metabolism , Amino Acid Sequence , Biophysical Phenomena , Dystrophin/genetics , Dystrophin/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Structural Homology, Protein , Thermodynamics , Utrophin/genetics , Utrophin/metabolism , Calponins
7.
Biochemistry ; 54(35): 5480-8, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26288220

ABSTRACT

Tandem calponin-homology (CH) domains are the most common actin-binding domains in proteins. However, structural principles underlying their function are poorly understood. These tandem domains exist in multiple conformations with varying degrees of inter-CH-domain interactions. Dystrophin and utrophin tandem CH domains share high sequence similarity (∼82%), yet differ in their structural stability and actin-binding affinity. We examined whether the conformational differences between the two tandem CH domains can explain differences in their stability and actin binding. Dystrophin tandem CH domain is more stable by ∼4 kcal/mol than that of utrophin. Individual CH domains of dystrophin and utrophin have identical structures but differ in their relative orientation around the interdomain linker. We swapped the linkers between dystrophin and utrophin tandem CH domains. Dystrophin tandem CH domain with utrophin linker (DUL) has similar stability as that of utrophin tandem CH domain. Utrophin tandem CH domain with dystrophin linker (UDL) has similar stability as that of dystrophin tandem CH domain. Dystrophin tandem CH domain binds to F-actin ∼30 times weaker than that of utrophin. After linker swapping, DUL has twice the binding affinity as that of dystrophin tandem CH domain. Similarly, UDL has half the binding affinity as that of utrophin tandem CH domain. However, changes in binding free energies due to linker swapping are much lower by an order of magnitude compared to the corresponding changes in unfolding free energies. These results indicate that the linker region determines primarily the structural stability of tandem CH domains rather than their actin-binding affinity.


Subject(s)
Actins/metabolism , Calcium-Binding Proteins/metabolism , Dystrophin/metabolism , Microfilament Proteins/metabolism , Utrophin/metabolism , Actins/chemistry , Calcium-Binding Proteins/chemistry , Dystrophin/chemistry , Microfilament Proteins/chemistry , Protein Binding/physiology , Protein Stability , Protein Structure, Secondary , Utrophin/chemistry , Calponins
8.
J Biol Inorg Chem ; 20(5): 805-19, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25948392

ABSTRACT

Trimethyllysine 72 (tmK72) has been suggested to play a role in sterically constraining the heme crevice dynamics of yeast iso-1-cytochrome c mediated by the Ω-loop D cooperative substructure (residues 70-85). A tmK72A mutation causes a gain in peroxidase activity, a function of cytochrome c that is important early in apoptosis. More than one higher energy state is accessible for the Ω-loop D substructure via tier 0 dynamics. Two of these are alkaline conformers mediated by Lys73 and Lys79. In the current work, the effect of the tmK72A mutation on the thermodynamic and kinetic properties of wild-type iso-1-cytochrome c (yWT versus WT*) and on variants carrying a K73H mutation (yWT/K73H versus WT*/K73H) is studied. Whereas the tmK72A mutation confers increased peroxidase activity in wild-type yeast iso-1-cytochrome c and increased dynamics for formation of a previously studied His79-heme alkaline conformer, the tmK72A mutation speeds return of the His73-heme alkaline conformer to the native state through destabilization of the His73-heme alkaline conformer relative to the native conformer. These opposing behaviors demonstrate that the response of the dynamics of a protein substructure to mutation depends on the nature of the perturbation to the substructure. For a protein substructure which mediates more than one function of a protein through multiple non-native structures, a mutation could change the partitioning between these functions. The current results suggest that the tier 0 dynamics of Ω-loop D that mediates peroxidase activity has similarities to the tier 0 dynamics required to form the His79-heme alkaline conformer.


Subject(s)
Cytochromes c/metabolism , Lysine/analogs & derivatives , Saccharomyces cerevisiae/chemistry , Thermodynamics , Cytochromes c/chemistry , Hydrogen-Ion Concentration , Kinetics , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Models, Molecular , Saccharomyces cerevisiae/metabolism , Sodium Chloride/chemistry , Sodium Chloride/metabolism
9.
Biochemistry ; 54(9): 1729-42, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25671560

ABSTRACT

An A81H variant of yeast iso-1-cytochrome c is prepared to test the hypothesis that the steric size of the amino acid at sequence position 81 of cytochrome c, which has evolved from Ala in yeast to Ile in mammals, slows the dynamics of the opening of the heme crevice. The A81H mutation is used both to increase steric size and to provide a probe of the dynamics of the heme crevice through measurement of the thermodynamics and kinetics of the His81-mediated alkaline conformational transition of A81H iso-1-cytochrome c. Thermodynamic measurements show that the native conformer is more stable than the His81-heme alkaline conformer for A81H iso-1-cytochrome c. ΔGu°(H2O) is approximately 1.9 kcal/mol for formation of the His81-heme alkaline conformer. By contrast, for K79H iso-1-cytochrome c, the native conformer is less stable than the His79-heme alkaline conformer. ΔGu°(H2O) is approximately -0.34 kcal/mol for formation of the His79-heme alkaline conformer. pH jump and gated electron transfer kinetics demonstrate that this stabilization of the native conformer in A81H iso-1-cytochrome c arises primarily from a decrease in the rate constant for formation of the His81-heme alkaline conformer, kf,His81, relative to kf,His79 for formation of the His79-heme alkaline conformer, which forms by a mechanism similar to that observed for the His81-heme alkaline conformer. The result is discussed in terms of the effect of global protein stability on protein dynamics and in terms of optimization of the sequence of cytochrome c for its role as a peroxidase in the early stages of apoptosis in higher eukaryotes.


Subject(s)
Cytochromes c/chemistry , Cytochromes c/genetics , Methionine/chemistry , Mutation, Missense , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Alanine/genetics , Amino Acid Sequence , Amino Acid Substitution , Histidine/genetics , Hydrogen-Ion Concentration , Methionine/genetics , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Stability , Protein Structure, Secondary/genetics , Temperature
10.
PLoS One ; 9(10): e110439, 2014.
Article in English | MEDLINE | ID: mdl-25340340

ABSTRACT

Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM). However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD). We created and expressed the wild-type (WT) N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein's overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts), and unfolds faster than the WT (stopped-flow kinetics). Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments). These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.


Subject(s)
Amino Acid Substitution , Dystrophin/chemistry , Dystrophin/genetics , Mutation, Missense/genetics , Protein Unfolding , Actins/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Biophysical Phenomena , Cardiomyopathy, Dilated/genetics , Dystrophin/metabolism , Humans , Molecular Sequence Data , Mutant Proteins/metabolism , Protein Binding , Protein Stability
11.
Biochemistry ; 53(14): 2209-11, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24678640

ABSTRACT

Domains are in general less stable than the corresponding full-length proteins. Human utrophin tandem calponin-homology (CH) domain seems to be an exception. Reversible, equilibrium denaturant melts indicate that the isolated C-terminal domain (CH2) is thermodynamically more stable than the tandem CH domain. Thermal melts show that CH2 unfolds at a temperature higher than that at which the full-length protein unfolds. Stopped-flow kinetics indicates that CH2 unfolds slower than the full-length protein, indicating its higher kinetic stability. Thus, the utrophin tandem CH domain may be one of the few proteins in which an isolated domain is more stable than the corresponding full-length protein.


Subject(s)
Calcium-Binding Proteins/chemistry , Microfilament Proteins/chemistry , Utrophin/chemistry , Area Under Curve , Chromatography, Gel , Kinetics , Thermodynamics , Calponins
12.
Biochemistry ; 53(11): 1801-9, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24628267

ABSTRACT

The structural determinants of the actin binding function of tandem calponin-homology (CH) domains are poorly understood, particularly the role of individual domains. We determined the actin binding affinity of isolated CH domains from human utrophin and compared them with the affinity of the full-length tandem CH domain. Traditional cosedimentation assays indicate that the C-terminal CH2 domain binds to F-actin much weaker than the full-length tandem CH domain. The N-terminal CH1 domain is less stable and undergoes severe protein aggregation; therefore, traditional actin cosedimentation assays could not be used. To address this, we have developed a folding-upon-binding method. We refolded the CH1 domain from its unfolded state in the presence of F-actin. This results in a competition between actin binding and aggregation. A differential centrifugation technique was used to distinguish actin binding from aggregation. Low-speed centrifugation pelleted CH1 aggregates, but not F-actin or its bound protein. Subsequent high-speed centrifugation resulted in the cosedimentation of bound CH1 along with F-actin. The CH1 domain binds to F-actin with an affinity similar to that of the full-length tandem CH domain, unlike the CH2 domain. The actin binding cooperativity between the two domains was quantitatively calculated from the association constants of the full-length tandem CH domain and its CH domains, and found to be much smaller than the association constant of the CH1 domain alone. These results indicate that the actin binding affinity of the utrophin tandem CH domain is primarily determined by its CH1 domain, when compared to that of its CH2 domain or the cooperativity between the two CH domains.


Subject(s)
Actins/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Utrophin/chemistry , Utrophin/metabolism , Actins/chemistry , Animals , Binding Sites/physiology , Cattle , Crystallography, X-Ray , Humans , Protein Binding , Protein Structure, Tertiary/physiology , Sequence Homology, Amino Acid , Calponins
13.
Biopolymers ; 100(1): 114-24, 2013.
Article in English | MEDLINE | ID: mdl-23335173

ABSTRACT

Intermolecular electron transfer (ET) between hexaamineruthenium(II), a(6) Ru(2+) , and a K73H/K79A variant of iso-1-cytochrome c, iso-1-Cytc, is used to study conformational ET switches mediated by His73-heme ligation and cis to trans isomerization of the Ile75-Pro76 peptidyl-prolyl bond of iso-1-Cytc. The biomolecular rate constant for ET to the native state of K73H/K79A iso-1-Cytc is ∼270 mM(-1) s(-1) near neutral pH. The unimolecular conformational ET switches due to His73-heme ligation and the Ile75-Pro76 peptidyl-prolyl bond gate ET at rate constants of 5 to 10 s(-1) and 0.05 to 0.06 s(-1) . Thus, at 1 mM a(6) Ru(2+) , these conformational ET switches slow electron transfer by about 50- and 5000-fold, respectively. The conformational ET switches are populated between pH 5 and 7, providing a means of modulating ET in this redox protein over several orders of magnitude by simply changing pH. The conformationally-gated ET measurements are analyzed in the context of previous pH jump measurements on the His73-heme alkaline transition of K73H/K79A iso-1-Cytc. The ability to obtain microscopic rate constants with conformationally-gated ET measurements has allowed more precise determination of the pK(a) s of the three ionizable groups that mediate population of the His73-heme ET switch. We have also been able to show that the ionizable group with a pK(a) near 9 stabilizes the His73-heme conformer relative to the native state of iso-1-Cytc and that contrary to the conclusions from our pH jump studies, this ionization does not strongly affect the rate of the Ile75-Pro76 peptidyl-prolyl isomerization.


Subject(s)
Cytochromes c , Heme , Electrons , Heme/chemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Kinetics , Ligation , Protein Conformation
14.
Proteins ; 80(5): 1377-92, 2012 May.
Article in English | MEDLINE | ID: mdl-22275054

ABSTRACT

Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-ß aggregates, indicating a possible role for utrophin mutations in disease mechanisms.


Subject(s)
Dystrophin/chemistry , Microfilament Proteins/chemistry , Utrophin/chemistry , Amino Acid Sequence , Binding Sites , Calcium-Binding Proteins/chemistry , Circular Dichroism , Dystrophin/genetics , Dystrophin/metabolism , Humans , Kinetics , Microfilament Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Protein Stability , Protein Unfolding , Sequence Alignment , Temperature , Thermodynamics , Utrophin/genetics , Utrophin/metabolism , Calponins
15.
Biochemistry ; 50(46): 10027-40, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-22026475

ABSTRACT

The alkaline transition of cytochrome c involves substitution of the Met80 heme ligand of the native state with a lysine ligand from a surface Ω-loop (residues 70 to 85). The standard mechanism for the alkaline transition involves a rapid deprotonation equilibrium followed by the conformational change. However, recent work implicates multiple ionization equilibria and stable intermediates. In previous work, we showed that the kinetics of formation of a His73-heme alkaline conformer of yeast iso-1-cytochrome c requires ionization of the histidine ligand (pK(HL) ~ 6.5). Furthermore, the forward and backward rate constants, k(f) and k(b), respectively, for the conformational change are modulated by two auxiliary ionizations (pK(H1) ~ 5.5, and pK(H2) ~ 9). A possible candidate for pK(H1) is His26, which has a strongly shifted pK(a) in native cytochrome c. Here, we use the AcH73 iso-1-cytochrome c variant, which contains an H26N mutation, to test this hypothesis. pH jump experiments on the AcH73 variant show no change in k(obs) for the His73-heme alkaline transition from pH 5 to 8, suggesting that pK(H1) has disappeared. However, direct measurement of k(f) and k(b) using conformationally gated electron transfer methods shows that the pH independence of k(obs) results from coincidental compensation between the decrease in k(b) due to pK(H1) and the increase in k(f) due to pK(HL). Thus, His26 is not the source of pK(H1). The data also show that the H26N mutation enhances the dynamics of this conformational transition from pH 5 to 10, likely as a result of destabilization of the protein.


Subject(s)
Cytochromes c1/chemistry , Cytochromes c1/genetics , Heme/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/enzymology , Electron Transport , Heme/genetics , Histidine/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Mutation , Oxidation-Reduction , Protein Conformation , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Thermodynamics
16.
J Am Chem Soc ; 130(24): 7540-1, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-18494471

ABSTRACT

The effect of global stability on the kinetics of interconversion between the native (N) and a compact, partially unfolded form (I) of iso-1-cytochrome c stabilized by His73-heme ligation is investigated using a novel conformationally gated ET method. For the K73H variant and the 2-fold less stable AcH73 variant, the N and I conformers are of nearly equal stability at pH 7.5. The pH jump kinetic data yield kobs = kNI + kIN of 35-40 s-1 at final pH values from 6 to 8 for the AcH73 variant, about 3-fold faster than for the more stable K73H variant. Gated ET measurements give kNI = 28 s-1 and kIN = 13 s-1 for the AcH73 variant, 10- and 2-fold greater than that for the more stable K73H variant. Thus, funneled landscapes have evolved such that loss of global stability lowers barriers at the bottom of a folding funnel, still allowing for efficient folding.


Subject(s)
Cytochromes c/chemistry , Electron Transport , Heme/chemistry , Histidine/chemistry , Histidine/genetics , Hydrogen-Ion Concentration , Kinetics , Ligands , Mutation , Protein Conformation , Protein Folding
17.
Biochemistry ; 46(37): 10643-54, 2007 Sep 18.
Article in English | MEDLINE | ID: mdl-17713929

ABSTRACT

To probe the mechanism of the alkaline conformational transition and its effect on the dynamics of gated electron transfer (ET) reactions, a Lys 79 --> His (K79H) variant of iso-1-cytochrome c has been prepared. Guanidine hydrochloride denaturation monitored by circular dichroism and absorbance at 695 nm indicates that this variant unfolds from a partially unfolded state. The conformation of the wild type (WT) and K79H proteins was monitored at 695 nm from pH 2 to 11. These data indicate that acid unfolding is multi-state for both K79H and WT proteins and that the His 79-heme alkaline conformer is more stable than a previously reported His 73-heme alkaline conformer. Fast and slow phases are observed in the kinetics of the alkaline transition of the K79H variant. The pH dependence of the fast phase kinetic data shows that ionizable groups with pKa values near 6.8 and 9 modulate the formation of the His 79-heme alkaline conformer. The slow phase kinetic data are consistent with a single ionizable group with a pKa near 9.5 promoting the Lys 73-heme alkaline transition. In the broader context of data on the alkaline transition, ionization of the ligand replacing Met 80 appears to play a primary role in promoting the formation of the alkaline conformer, with other ionizable groups acting as secondary modulators. Intermolecular ET with hexaammineruthenium(II) chloride shows conformational gating due to both His 79-heme and Lys 73-heme alkaline conformers. Both the position and the nature of the alkaline state ligand modulate the dynamics of ET gating.


Subject(s)
Alkalies/metabolism , Cytochromes c/chemistry , Histidine/genetics , Lysine/genetics , Mutant Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Anaerobiosis/drug effects , Electron Transport/drug effects , Guanidine/pharmacology , Heme/chemistry , Hydrogen-Ion Concentration , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Protein Conformation/drug effects , Protein Denaturation/drug effects , Protein Folding , Protein Structure, Secondary , Protons , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL