Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 119: 1256-1263, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30096399

ABSTRACT

A halo-tolerant glutaminase gene (BlglsA) was isolated from Bacillus licheniformis. Heterologous expression of BlglsA revealed that it encodes for a 36 kDa protein containing 327 amino acid residues. The purified enzyme showed optimal activity at a pH of 9.5 while 35 °C was found to be the optimum temperature. The enzyme retained about 92 and 97% stability at pH 12 and temperature (40 °C) respectively. Subsequent immobilization of BlglsA on nano magnetic cellulose sheet (NMCS) led to an enhanced tolerance to higher temperature. NMCS-BlglsA showed optimum activity at 45 °C, although it was stable even at 60 °C. NaCl tolerance (≥90% in 0.3 M) was almost similar to BlglsA and NMCS-BlglsA. The metal ions Fe2+ (5 mM) and Mn2+ (2.5 mM) improved the BlglsA relative activity by 61 and 48%, respectively. In contrast, 5 mM Mn2+ was found suitable to enhance the activity of NMCS-BlglsA up to 72%. The production of glutamic acid by NMCS-BlglsA was 1.61 g/l in 48 h. Reusability test of NMCS-BlglsA showed 76 and 35% retention of the actual activity after 4th and 7th cycle, respectively. Such remarkable biochemical properties of NMCS-BlglsA make it an attractive enzyme for food industries.


Subject(s)
Bacillus licheniformis/enzymology , Cellulose/chemistry , Glutamic Acid/metabolism , Glutaminase/chemistry , Glutaminase/metabolism , Magnetite Nanoparticles/chemistry , Temperature , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Metals/pharmacology , Models, Molecular , Protein Conformation , Sodium Chloride/pharmacology
2.
Sci Rep ; 8(1): 6448, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29691456

ABSTRACT

Concrete is a strong and fairly inexpensive building substance, but has several disadvantages like cracking that allows corrosion, thus reducing its lifespan. To mitigate these complications, long-lasting microbial self-healing cement is an alternative that is eco-friendly and also actively repairs cracks. The present paper describes the detailed experimental investigation on compressive strength of cement mortars, mixed with six alkaliphilic bacteria, isolated from subsurface mica mines of high alkalinity. The experiments showed that the addition of alkaliphilic isolates at different cell concentrations (104 and 106 cells/ml) enhanced the compressive strength of cement mortar, because the rapid growth of bacteria at high alkalinity precipitates calcite crystals that lead to filling of pores and densifying the concrete mix. Thus, Bacillus subtilis (SVUNM4) showed the highest compressive strength (28.61%) of cement mortar at 104 cells/ml compared to those of other five alkaliphilic isolates (Brevibacillus sp., SVUNM15-22.1%; P. dendritiformis, SVUNM11-19.9%; B. methylotrophicus, SVUNM9-16%; B. licheniformis, SVUNM14-12.7% and S. maltophilia, SVUNM13-9.6%) and controlled cement mortar as well. This method resulted in the filling of cracks in concrete with calcite (CaCO3), which was observed by scanning electron microscopy (SEM). Our results showed that the alkaliphilic bacterial isolates used in the study are effective in self-healing and repair of concrete cracks.


Subject(s)
Construction Materials/microbiology , Endospore-Forming Bacteria/metabolism , Industrial Microbiology/methods , Alkalies/chemistry , Bacillus/chemistry , Bacillus/isolation & purification , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Brevibacillus/chemistry , Brevibacillus/isolation & purification , Calcium Carbonate/chemistry , Compressive Strength , Microscopy, Electron, Scanning , Paenibacillus/chemistry , Paenibacillus/isolation & purification , Stenotrophomonas/chemistry , Stenotrophomonas/isolation & purification
3.
Microb Cell Fact ; 17(1): 45, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29554914

ABSTRACT

BACKGROUND: In industries lipolytic reactions occur in insensitive conditions such as high temperature thus novel stout esterases with unique properties are attracts to the industrial application. Protein engineering is the tool to obtain desirable characters of enzymes. A novel esterase gene was isolated from South China Sea and subjected to a random mutagenesis and site directed mutagenesis for higher activity and thermo-stability compared to wild type. RESULTS: A novel esterase showed the highest hydrolytic activity against p-nitrophenyl acetate (pNPA, C2) and the optimal activity at 40 °C and pH 8.5. It was a cold-adapted enzyme and retained approximately 40% of its maximum activity at 0 °C. A mutant, with higher activity and thermo-stability was obtained by random mutagenesis. Kinetic analysis indicated that the mutant Val29Ala/Tyr193Cys shown 43.5% decrease in K m , 2.6-fold increase in K cat , and 4.7-fold increase in K cat /K m relative to the wild type. Single mutants V29A and Y193C were constructed and their kinetic parameters were measured. The results showed that the values of K m , K cat , and K cat /K m of V29A were similar to those of the wild type while Y193C showed 52.7% decrease in K m , 2.7-fold increase in K cat , and 5.6-fold increase in K cat /K m compared with the wild type. The 3-D structure and docking analysis revealed that the replacement of Tyr by Cys could enlarge the binding pocket. Moreover Y193C also showed a better thermo-stability for the reason its higher hydrophobicity and retained 67% relative activity after incubation for 3 h at 50 °C. CONCLUSIONS: The superior quality of modified esterase suggested it has great potential application in extreme conditions and the mutational work recommended that important information for the study of esterase structure and function.


Subject(s)
Enterobacter cloacae/chemistry , Esterases/chemistry , Protein Engineering/methods , Cold Temperature
4.
Bioresour Technol ; 249: 354-360, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29055211

ABSTRACT

To synthesis biodiesel from palm oil in one-time addition of methanol and solvent-free medium using CBD fused with C-terminal of lipase from G. stearothermophilus (GSlip-CBD) was immobilized onto magnetic cellulose nanosphere (MCNS). The immobilized matrix traits were preconceived by FT-IR, TEM and XRD. Perceptible biodiesel yield 98 and 73% was synthesized by GSlip-CBD-MCNS in 4 h and GSlip-MCNS in 6 h under the optimized conditions of oil:methanol ratio (1:3.5), temperature (55 and 50 °C) and enzyme loading (15 U). Intriguingly, the operational stability of GSlip-CBD-MCNS was an easily attainable owing to the magnetic properties and could be reused up to 8th and19th cycles with 94 and 45% of biodiesel yield respectively, compared to GSlip-MCNS. Thus GSlip-CBD-MCNS could be a potential biocatalyst for higher yield of biodiesel and reusability in one step addition of methanol.


Subject(s)
Biofuels , Lipase , Nanospheres , Cellulose , Enzymes, Immobilized , Esterification , Methanol , Spectroscopy, Fourier Transform Infrared
5.
3 Biotech ; 4(6): 655-664, 2014 Dec.
Article in English | MEDLINE | ID: mdl-28324314

ABSTRACT

The main objective of this study was to isolate the fungal strain for enhanced production of xylanase using different agro-residues and fruit peels by solid state fermentation and its potentiality was tested on the pretreated corn cob. Fermentation was carried out with Trichoderma koeningi isolate using untreated and pretreated corn cob supplemented with pineapple peel powder showed higher production of xylanase 2,869.8 ± 0.4 (IU/g) and extracellular protein 7.6 ± 0.2 (mg/g) of corn cob, in the latter than the former yielding 1,347.2 ± 0.7 (IU/g) and 4.9 ± 0.1 (mg/g) of corn cob, respectively, at pH 6.5 and incubation period for 96 h. In the FT-IR spectrum, the bands at 1,155, 1,252 and 1,738 cm-1 had disappeared. This indicates the depolymerization of hemicellulose and the band at 1,053 cm-1 shows the presence of ß (1-4)-xylan in the pretreated corn cobs. The pretreated biomass hydrolysed with a xylanase concentration of 14 U and 6 h incubation showed mainly xylose and its oligosaccharides, which were quantified using HPLC. From the results we can conclude that pretreated energy-value and cheaply available agro-residues can be effectively used as substrates for the enhanced production of xylanase.

SELECTION OF CITATIONS
SEARCH DETAIL
...