Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Chemistry ; 30(7): e202302750, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37996997

ABSTRACT

Slightly different reaction conditions afforded two distinct cavity-shaped cis-chelating diphosphanes from the same starting materials, namely diphenyl(2-phosphanylphenyl)phosphane and an α-cyclodextrin-derived dimesylate. Thanks to their metal-confining properties, the two diphosphanes form only mononuclear [CuX(PP)] complexes (X=Cl, Br, or I) with the tricoordinated metal ion located just above the center of the cavity. The two series of CuI complexes display markedly different luminescence properties that are both influenced by the electronic properties of the ligand and the unique steric environment provided by the cyclodextrin (CD) cavity. The excited state lifetimes of all complexes are significantly longer than those of the cavity-free analogues suggesting peculiar electronic effects that affect radiative deactivation constants. The overall picture stemming from absorption and emission data suggests close-lying charge-transfer (MLCT, XLCT) and triplet ligand-centered (LC) excited states.

2.
Sci Rep ; 13(1): 22733, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123639

ABSTRACT

Although once regarded as a unique human feature, tool-use is widespread in the animal kingdom. Some of the most proficient tool-users are our closest living relatives, chimpanzees. These repertoires however consist primarily of tool use, rather than tool manufacture (for later use). Furthermore, most populations of chimpanzees use organic materials, such as sticks and leaves, rather than stones as tools. This distinction may be partly ecological, but it is also important as chimpanzees are often used as models for the evolution of human material culture, the oldest traces of which consist of manufactured sharp stone tools (so-called "flakes"). Thus, examining the conditions (if any) under which chimpanzees may develop flake manufacture and use can provide insight into the drivers of these behaviours in our own lineage. Previous studies on non-human apes' ability to make and use flakes focused on enculturated apes, giving them full demonstrations of the behaviour immediately, without providing social information on the task in a stepwise manner. Here we tested naïve, captive chimpanzees (N = 4; three potentially enculturated and one unenculturated subject) in a social learning experimental paradigm to investigate whether enculturated and/or unenculturated chimpanzees would develop flake making and use after social information of various degrees (including a human demonstration) was provided in a scaffolded manner. Even though social learning opportunities were provided, neither the unenculturated subject nor any of the potentially enculturated subjects made or used flakes, in stark contrast to previous studies with enculturated apes. These data suggest that flake manufacture and use is outside of our tested group of captive chimpanzees' individual and social learning repertoires. It also suggests that high levels of enculturation alongside human demonstrations (and/or training) may be required before captive chimpanzees can develop this behaviour.


Subject(s)
Pan troglodytes , Social Learning , Animals , Humans , Learning , Behavior, Animal , Social Behavior
3.
Molecules ; 28(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298847

ABSTRACT

This paper reports the synthesis, structure, photophysical, and optoelectronic properties of five eight-coordinate Europium(III) ternary complexes, namely, [Eu(hth)3(L)2], bearing 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione (hth) as a sensitizer and L = H2O (1), dpso (diphenyl sulphoxide, 2), dpsoCH3 (4,4'-dimethyl diphenyl sulfoxide, 3), dpsoCl (bis(4-chlorophenyl)sulphoxide, 4), and tppo (triphenylphosphine oxide, 5) as co-ligands. The NMR and the crystal structure analysis confirmed the eight-coordinate structures of the complexes in solution and in a solid state. Upon UV-excitation on the absorption band of the ß-diketonate ligand hth, all complexes showed the characteristic bright red luminescence of the Europium ion. The tppo derivative (5) displayed the highest quantum yield (up to 66%). As a result, an organic light-emitting device, OLED, was fabricated with a multi-layered structure-ITO/MoO3/mCP/SF3PO:[complex 5] (10%)/TPBi:[complex 5] (10%)/TmPyPB/LiF/Al-using complex 5 as the emitting component.


Subject(s)
Europium , Polymethyl Methacrylate , Europium/chemistry , Polymethyl Methacrylate/chemistry , Luminescence , Ketones/chemistry , Ligands
5.
Angew Chem Int Ed Engl ; 62(6): e202214638, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36433744

ABSTRACT

A ß-cyclodextrin-based diphosphane with metal-confining properties was efficiently synthesized thanks to an unprecedented Smiles-like rearrangement of diphenyl-(2-phosphanylphenyl)phosphane in the presence of excess n-BuLi. The cis-chelating bidentate ligand is capable of forming very stable heteroleptic [Cu(NN)(PP)]+ complexes in which a metal-bound diimine ligand (bpy, phen, or mmp) is located within the cyclodextrin cavity. As a result of ligand encapsulation, flattening of the metal tetrahedral geometry in the excited state is disfavored, thereby resulting in enhanced luminescent properties.

6.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144738

ABSTRACT

Heteroleptic cyclometalated iridium (III) complexes (1-3) containing di-pyridylamine motifs were prepared in a stepwise fashion. The presence of the di-pyridylamine ligands tunes their electronic and optical properties, generating blue phosphorescent emitters at room temperature. Herein we describe the synthesis of the mononuclear iridium complexes [Ir(ppy)2(DPA)][OTf] (1), (ppy = phenylpyridine; DPA = Dipyridylamine) and [Ir(ppy)2(DPA-PhI)][OTf] (2), (DPA-PhI = Dipyridylamino-phenyliodide). Moreover, the dinuclear iridium complex [Ir(ppy)2(L)Ir(ppy)2][OTf]2 (3) containing a rigid angular ligand "L = 3,5-bis[4-(2,2'-dipyridylamino)phenylacetylenyl]toluene" and displaying two di-pyridylamino groups was also prepared. For comparison purposes, the related dinuclear rhodium complex [Rh (ppy)2(L)Rh(ppy)2][OTf]2 (4) was also synthesized. The x-ray molecular structure of complex 2 was reported and confirmed the formation of the target molecule. The rhodium complex 4 was found to be emissive only at low temperature; in contrast, all iridium complexes 1-3 were found to be phosphorescent in solution at 77 K and room temperature, displaying blue emissions in the range of 478-481 nm.

7.
J Phys Chem C Nanomater Interfaces ; 126(24): 10190-10198, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35774291

ABSTRACT

A novel Cu(I) cluster compound has been synthesized by reacting CuI with the 2,2'-dithiobis(5-nitropyridine) ligand under solvothermal conditions. During the reaction, the original ligand breaks into the 5-nitropyridine-2-thiolate moiety, which acts as the coordinating ligand with both N- and S-sites, leading to a distorted octahedral Cu6S6 cluster. The structure has been determined by single-crystal X-ray diffraction and FT-IR analysis, and the photophysical properties have been determined in the solid state by means of steady-state and time-resolved optical techniques. The cluster presents a near-infrared emission showing an unusual temperature dependence: when passing from 77 to 298 K, a blue-shift of the emission band is observed, associated with a decrease in its intensity. Time-dependent-density functional theory calculations suggest that the observed behavior can be ascribed to a complex interplay of excited states, basically in the triplet manifold.

8.
Biol Theory ; 16(2): 76-82, 2021.
Article in English | MEDLINE | ID: mdl-34720770

ABSTRACT

The critical examination of current hypotheses is one of the key ways in which scientific fields develop and grow. Therefore, any critique, including Haidle and Schlaudt's article, "Where Does Cumulative Culture Begin? A Plea for a Sociologically Informed Perspective," represents a welcome addition to the literature. However, critiques must also be evaluated. In their article, Haidle and Schlaudt (Biol Theory 15:161-174, 2020. 10.1007/s13752-020-00351-w; henceforth H&S) review some approaches to culture and cumulative culture in both human and nonhuman primates. H&S discuss the "zone of latent solutions" (ZLS) hypothesis as applied to nonhuman primates and stone-toolmaking premodern hominins. Here, we will evaluate whether H&S's critique addresses its target.

9.
Am J Primatol ; 83(9): e23304, 2021 09.
Article in English | MEDLINE | ID: mdl-34378813

ABSTRACT

Nut-cracking with hammer tools (henceforth: nut-cracking) has been argued to be one of the most complex tool-use behaviors observed in nonhuman animals. So far, only chimpanzees, capuchins, and macaques have been observed using tools to crack nuts in the wild (Boesch and Boesch, 1990; Gumert et al., 2009; Mannu and Ottoni, 2009). However, the learning mechanisms behind this behavior, and the extent of nut-cracking in other primate species are still unknown. The aim of this study was two-fold. First, we investigated whether another great ape species would develop nut-cracking when provided with all the tools and appropriate conditions to do so. Second, we examined the mechanisms behind the emergence of nut-cracking by testing a naïve sample. Orangutans (Pongo abelii and Pongo pygmaeus) have the second most extensive tool-use repertoire among the great apes (after chimpanzees) and show flexible problem-solving capacities. Orangutans have not been observed cracking nuts in the wild, however, perhaps because their arboreal habits provide limited opportunities for nut-cracking. Therefore, orangutans are a valid candidate species for the investigation of the development of this behavior. Four nut-cracking-naïve orangutans at Leipzig zoo (P. abelii; Mage = 16; age range = 10-19; 4F; at the time of testing) were provided with nuts and hammers but were not demonstrated the nut-cracking behavioral form. Additionally, we report data from a previously unpublished study by one of the authors (Martina Funk) with eight orangutans housed at Zürich zoo (six P. abelii and two P. pygmaeus; Mage = 14; age range = 2-30; 5F; at the time of testing) that followed a similar testing paradigm. Out of the twelve orangutans tested, at least four individuals, one from Leipzig (P. abelii) and three from Zürich (P. abelii and P. pygmaeus), spontaneously expressed nut-cracking using wooden hammers. These results demonstrate that nut-cracking can emerge in orangutans through individual learning and certain types of non-copying social learning.


Subject(s)
Pongo abelii , Tool Use Behavior , Animals , Nuts , Pongo pygmaeus , Problem Solving
10.
Am J Primatol ; 83(1): e23224, 2021 01.
Article in English | MEDLINE | ID: mdl-33337547

ABSTRACT

Studies on primate tool-use often involve the use of baseline conditions, as they allow for the examination of any differences in the subjects' behavior before and after the introduction of a tool-use task. While these baseline conditions can be powerful for identifying the relative contributions of individual and social learning for the acquisition of tool-use behaviors in naïve (usually captive) subjects, many have criticized them for being too short, and not allowing enough time for the behavior to develop spontaneously. Furthermore, some wild tool-use behaviors such as chimpanzee nut-cracking require animals to manipulate and familiarize themselves with the materials of the behavior within a "sensitive learning period" before it develops later on in life. One solution to this problem is to implement long-term baselines, in which, with collaboration with zoological institutions, the materials of the behavior are left in the enclosure for an extended period. The keepers would then be asked not to demonstrate or train the animals in the target behavior, but to report back to the researchers if they observe the behavior emerge during this extended period. Alongside keeper reports, video cameras could be installed in the enclosure to minimize the chance of false negatives and to allow for coding and inter-rater reliability to be carried out on the videos. These long-term baselines therefore provide extended enrichment opportunities for the animals, alongside allowing the zoological institution to publicize their involvement with the study and guests to observe animals interacting with different testing apparatuses and tools. Finally, long-term baselines can provide invaluable insight on the individual and social learning abilities of primates as well as the potential development stages and sensitive learning periods required for specific behaviors.


Subject(s)
Primates/psychology , Tool Use Behavior , Zoology/methods , Animals , Animals, Wild , Animals, Zoo
11.
Open Res Eur ; 1: 20, 2021.
Article in English | MEDLINE | ID: mdl-35253007

ABSTRACT

Background: Despite substantial research on early hominin lithic technologies, the learning mechanisms underlying flake manufacture and use are contested. To draw phylogenetic inferences on the potential cognitive processes underlying the acquisition of both of these abilities in early hominins, we investigated if and how one of our closest living relatives, chimpanzees ( Pan troglodytes), could learn to make and use flakes. Methods: Across several experimental conditions, we tested eleven task-naïve chimpanzees (unenculturated n=8, unknown status n=3) from two independent populations for their abilities to spontaneously make and subsequently use flakes as well as to use flakes made by a human experimenter. Results: Despite the fact that the chimpanzees seemed to understand the requirements of the task, were sufficiently motivated and had ample opportunities to develop the target behaviours, none of the chimpanzees tested made or used flakes in any of the experimental conditions. Conclusions: These results differ from all previous ape flaking experiments, which found flake manufacture and use in bonobos and one orangutan. However, these earlier studies tested human-enculturated apes and provided test subjects with flake making and using demonstrations. The contrast between these earlier positive findings and our negative findings (despite using a much larger sample size) suggests that enculturation and/or demonstrations may be necessary for chimpanzees to acquire these abilities. The data obtained in this study are consistent with the hypothesis that flake manufacture and use might have evolved in the hominin lineage after the split between Homo and Pan 7 million years ago, a scenario further supported by the initial lack of flaked stone tools in the archaeological record after this split. We discuss possible evolutionary scenarios for flake manufacture and use in both non-hominin and hominin lineages.

12.
PeerJ ; 8: e9877, 2020.
Article in English | MEDLINE | ID: mdl-33033659

ABSTRACT

The notion that tool-use is unique to humans has long been refuted by the growing number of observations of animals using tools across various contexts. Yet, the mechanisms behind the emergence and sustenance of these tool-use repertoires are still heavily debated. We argue that the current animal behaviour literature is biased towards a social learning approach, in which animal, and in particular primate, tool-use repertoires are thought to require social learning mechanisms (copying variants of social learning are most often invoked). However, concrete evidence for a widespread dependency on social learning is still lacking. On the other hand, a growing body of observational and experimental data demonstrates that various animal species are capable of acquiring the forms of their tool-use behaviours via individual learning, with (non-copying) social learning regulating the frequencies of the behavioural forms within (and, indirectly, between) groups. As a first outline of the extent of the role of individual learning in animal tool-use, a literature review of reports of the spontaneous acquisition of animal tool-use behaviours was carried out across observational and experimental studies. The results of this review suggest that perhaps due to the pervasive focus on social learning in the literature, accounts of the individual learning of tool-use forms by naïve animals may have been largely overlooked, and their importance under-examined.

13.
Biol Philos ; 35(5): 55, 2020.
Article in English | MEDLINE | ID: mdl-33093737

ABSTRACT

The zone of latent solutions (ZLS) hypothesis provides an alternative approach to explaining cultural patterns in primates and many other animals. According to the ZLS hypothesis, non-human great ape (henceforth: ape) cultures consist largely or solely of latent solutions. The current competing (and predominant) hypothesis for ape culture argues instead that at least some of their behavioural or artefact forms are copied through specific social learning mechanisms ("copying social learning hypothesis") and that their forms may depend on copying (copying-dependent forms). In contrast, the ape ZLS hypothesis does not require these forms to be copied. Instead, it suggests that several (non-form-copying) social learning mechanisms help determine the frequency (but typically not the form) of these behaviours and artefacts within connected individuals. The ZLS hypothesis thus suggests that increases and stabilisations of a particular behaviour's or artefact's frequency can derive from socially-mediated (cued) form reinnovations. Therefore, and while genes and ecology play important roles as well, according to the ape ZLS hypothesis, apes typically acquire the forms of their behaviours and artefacts individually, but are usually socially induced to do so (provided sufficient opportunity, necessity, motivation and timing). The ZLS approach is often criticized-perhaps also because it challenges the current null hypothesis, which instead assumes a requirement of form-copying social learning mechanisms to explain many ape behavioural (and/or artefact) forms. However, as the ZLS hypothesis is a new approach, with less accumulated literature compared to the current null hypothesis, some confusion is to be expected. Here, we clarify the ZLS approach-also in relation to other competing hypotheses-and address misconceptions and objections. We believe that these clarifications will provide researchers with a coherent theoretical approach and an experimental methodology to examine the necessity of form-copying variants of social learning in apes, humans and other species.

14.
Behav Brain Sci ; 43: e173, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32772970

ABSTRACT

To support their claim for technical reasoning skills rather than imitation as the key for cumulative technological culture (CTC), Osiurak and Reynaud argue that chimpanzees can imitate mechanical actions, but do not have CTC. They also state that an increase in working memory in human evolution could not have been a key driver of CTC. We discuss why we disagree with these claims.


Subject(s)
Imitative Behavior , Memory, Short-Term , Humans , Problem Solving , Technology
15.
Dalton Trans ; 49(30): 10545-10553, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32691799

ABSTRACT

Three new coordination polymers (CPs) named [Cu(6mna)]n (CP1), [CuCl(H6mna)(H2O)0.33]n (CP2), and {[(CuI)2H2dtdn].MeCN}n (CP3), (H6mna = 6-mercaptonicotinic acid, and H2dtdn = 6,6'-dithiodinicotinic acid) have been synthesized and their structures determined by single-crystal X-ray diffraction. Complexes 1 and 3 are 2D-CPs while complex 2 is a 1D-CP. The optical properties of these complexes have been evaluated in the solid state, at room temperature and at 77 K, and compared with those of the starting ligands. The electrical conductivity of CPs 1-3 has been evaluated and their thermal stabilities have been studied. CP2 shows an interesting crystal arrangement, where the connection between the ligand and the copper forms a channel-like structure characterized by an intrinsic disorder. Crystal data collected at low temperatures for this complex revealed minor structural changes in the CuCu distances and Cu-S-Cu angles along the chain, excluding phase transition. In CP1, the N and S atoms are involved in metal coordination bonds giving rise to a 2D coordination polymer. In CP3, the Cu-I bonds compose double ladder-like structures, bridged by H2dtdn ligands. The electrical conductivities of CPs 1-3 suggest their semiconductive behavior.

16.
Biol Lett ; 16(6): 20200122, 2020 06.
Article in English | MEDLINE | ID: mdl-32486940

ABSTRACT

Despite major advances in the study of animal tool behaviour, researchers continue to debate how exactly certain behaviours are acquired. While specific mechanisms, such as genetic predispositions or action copying, are sometimes suspected to play a major role in behavioural acquisition, controlled experiments are required to provide conclusive evidence. In this opinion piece, we refer to classic ethological methodologies to emphasize the need for studying the relative contributions of different factors to the emergence of specific tool behaviours. We describe a methodology, consisting of a carefully staged series of baseline and social-learning conditions, that enables us to tease apart the roles of different mechanisms in the development of behavioural repertoires. Experiments employing our proposed methodology will not only advance our understanding of animal learning and culture, but as a result, will also help inform hypotheses about human cognitive, cultural and technological evolution. More generally, our conceptual framework is suitable for guiding the detailed investigation of other seemingly complex animal behaviours.


Subject(s)
Behavior, Animal , Learning , Animals , Humans
17.
Chemistry ; 26(48): 11013-11023, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32301186

ABSTRACT

Five extended π-conjugated systems with electron donor (D) and acceptor (A) moieties have been synthesized. Their basic D-A-D structural motif is a benzothiadiazole unit symmetrically equipped with two thiophene rings (S2T). Its variants include 1) the same molecular framework in which sulfur is replaced by selenium (Se2T), also with four thiophene units (Se4T) and 2) a D'-D-A-D system having a N-carbazole donor moiety at one end (CS2T) and a D'-D-A-D-A' array with a further acceptor carbonyl unit at the other extremity (CS2TCHO). The goal is taking advantage of the intense luminescence and large Stokes shifts of the five molecules for use in luminescent solar concentrators (LSCs). All of them exhibit intense absorption spectra in the UV/Vis region down to 630 nm, which are fully rationalized by DFT. Emission properties have been studied in CH2 Cl2 (298 and 77 K) as well as in PMMA and PDMS matrices, measuring photoluminescence quantum yields (up to 98 %) and other key optical parameters. The dye-PMMA systems show performances comparable to the present state-of-the-art, in terms of optical and external quantum efficiencies (OQE=47.6 % and EQE=31.3 %, respectively) and flux gain (F=10.3), with geometric gain close to 90. LSC devices have been fabricated and tested in which the five emitters are embedded in PDMS and their wave-guided VIS luminescence feeds crystalline silicon solar cells.

18.
Biol Rev Camb Philos Soc ; 95(5): 1167-1197, 2020 10.
Article in English | MEDLINE | ID: mdl-32307892

ABSTRACT

The study of innovation in non-human animals (henceforth: animals) has recently gained momentum across fields including primatology, animal behaviour and cultural evolution. Examining the rate of innovations, and the cognitive mechanisms driving these innovations across species, can provide insights into the evolution of human culture. Especially relevant to the study of human culture is one of our closest living relatives, the chimpanzee (Pan troglodytes). Both wild and captive chimpanzees demonstrate an impressive ability to innovate solutions to novel problems, but also a striking level of conservatism in some contexts, creating a unique and at times puzzling, picture of animal innovation. Whilst the animal innovation field is rife with potential for expanding our knowledge of human and non-human cognition and problem-solving, it is undermined by a lack of consistency across studies. The field is yet to settle on a definition of the term 'innovation', leading to studies being incomparable across and even within the same species. Here, we fill two gaps in the literature. First, we discuss some of the most prevalent definitions of 'innovation' from different fields, highlighting similarities and differences between them. Secondly, we provide an up-to-date review of accounts of innovations in both wild and captive chimpanzees. We hope this review will provide a resource for researchers interested in the study of innovation in chimpanzees and other animals, as well as emphasising the need for consistency in the way in which innovations are reported.


Subject(s)
Behavior, Animal , Pan troglodytes , Animals , Cognition
19.
PeerJ ; 8: e8734, 2020.
Article in English | MEDLINE | ID: mdl-32195057

ABSTRACT

Nut-cracking is often cited as one of the most complex behaviours observed in wild chimpanzees. However, the cognitive mechanisms behind its acquisition are still debated. The current null hypothesis is that the form of nut-cracking behaviour relies on variants of social learning, with some researchers arguing, more precisely, that copying variants of social learning mechanisms are necessary. However, to date, very few experiments have directly investigated the potentially sufficient role of individual learning in explaining the behavioural form of nut-cracking. Despite this, the available data provides some evidence for the spontaneous acquisition of nut-cracking by chimpanzees; later group acquisition was then found to be at least facilitated by (unspecified) variants of social learning. The latter findings are in line with both suggested hypotheses, i.e., that copying social learning is required and that other (non-copying) social learning mechanisms are at play. Here we present the first study which focused (initially) on the role of individual learning for the acquisition of the nut-cracking behavioural form in chimpanzees. We tested task-naïve chimpanzees (N = 13) with an extended baseline condition to examine whether the behaviour would emerge spontaneously. After the baseline condition (which was unsuccessful), we tested for the role of social learning by providing social information in a step-wise fashion, culminating in a full action demonstration of nut-cracking by a human demonstrator (this last condition made it possible for the observers to copy all actions underlying the behaviour). Despite the opportunities to individually and/or socially learn nut-cracking, none of the chimpanzees tested here cracked nuts using tools in any of the conditions in our study; thus, providing no conclusive evidence for either competing hypothesis. We conclude that this failure was the product of an interplay of factors, including behavioural conservatism and the existence of a potential sensitive learning period for nut-cracking in chimpanzees. The possibility remains that nut-cracking is a behaviour that chimpanzees can individually learn. However, this behaviour might only be acquired when chimpanzees are still inside their sensitive learning period, and when ecological and developmental conditions allow for it. The possibility remains that nut-cracking is an example of a culture dependent trait in non-human great apes. Recommendations for future research projects to address this question are considered.

20.
Am J Primatol ; 81(6): e22987, 2019 07.
Article in English | MEDLINE | ID: mdl-31087361

ABSTRACT

Many studies investigating culture in nonhuman animals tend to focus on the inferred need of social learning mechanisms that transmit the form of a behavior to explain the population differences observed in wild animal behavioral repertoires. This research focus often results in studies overlooking the possibility of individuals being able to develop behavioral forms without requiring social learning. The disregard of individual learning abilities is most clearly observed in the nonhuman great ape literature, where there is a persistent claim that chimpanzee behaviors, in particular, require various forms of social learning mechanisms. These special social learning abilities have been argued to explain the acquisition of the relatively large behavioral repertoires observed across chimpanzee populations. However, current evidence suggests that although low-fidelity social learning plays a role in harmonizing and stabilizing the frequency of behaviors within chimpanzee populations, some (if not all) of the forms that chimpanzee behaviors take may develop independently of social learning. If so, they would be latent solutions-behavioral forms that can (re-)emerge even in the absence of observational opportunities, via individual (re)innovations. Through a combination of individual and low-fidelity social learning, the population-wide patterns of behaviors observed in great ape species are then established and stably maintained. This is the Zone of Latent Solutions (ZLS) hypothesis. The current study experimentally tested the ZLS hypothesis for pestle pounding, a wild chimpanzee behavior. We tested the reinnovation of this behavior in semi-wild chimpanzees at Chimfunshi Wildlife Orphanage in Zambia, Africa, (N = 90, tested in four social groups). Crucially, all subjects were naïve to stick pounding before testing. Three out of the four tested groups reinnovated stick pounding-clearly demonstrating that this behavioral form does not require social learning. These findings provide support for the ZLS hypothesis alongside further evidence for the individual learning abilities of chimpanzees.


Subject(s)
Pan troglodytes/psychology , Tool Use Behavior , Animals , Learning , Social Behavior , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...