Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 129(2): 241-5, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17765996

ABSTRACT

Understanding the molecular mechanisms of influenza virus resistance to neuraminidase inhibitors is a main concern for their clinical use. In an attempt to reproduce in vivo selective conditions where influenza virus resistance to neuraminidase inhibitors can occur the zanamivir selection of an A/H1N1 influenza virus strain was carried out in Madin-Darby canine kidney cells performed in the presence or absence of sialic acid-containing inhibitor analogues that act as virus decoy receptors. The zanamivir-selected variants passaged in the presence of sialic acid-containing molecules resembling the human-like virus receptor lost the ability to bind red blood cells. Furthermore, whereas all zanamivir-selected variants exhibited a robust reduction in susceptibility to zanamivir in plaque assays only those obtained after extensive passages acquired a powerful neuraminidase enzyme resistance to zanamivir and oseltamivir. Evidence that balanced neuraminidase and hemagglutinin activities mediated by mutations induced during selection could play a role in the decrease of virus replication susceptibility to zanamivir is reported.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Neuraminidase/antagonists & inhibitors , Sialic Acids/metabolism , Zanamivir/pharmacology , Animals , Cell Line , Drug Resistance, Viral , Enzyme Inhibitors/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Mutation , Neuraminidase/metabolism , Oseltamivir/pharmacology , Viral Plaque Assay , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...