Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 3542, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24667335

ABSTRACT

Cryptophanes, composed of two bowl-shaped cyclotriveratrylene subunits linked by three aliphatic linker groups, are prototypal organic host molecules which bind reversibly neutral small guest compounds via London forces. The binding constants for these complexes are usually measured in tetrachloroethane and are in the range of 10(2)-10(3) M(-1). Here we show that tetrachloroethane is--in contrast to the scientific consensus--enclosed by the cryptophane-E cavity. By means of NMR spectroscopy we show that the binding constant for CHCl3@cryptophane-E is in larger solvents two orders of magnitudes higher than the one measured before. Ab initio calculations reveal that attractive dispersion energy is responsible for high binding constants and for the formation of imploded cryptophanes which seem to be more stable than cryptophanes with empty cavities.

5.
Chemistry ; 13(27): 7701-7, 2007.
Article in English | MEDLINE | ID: mdl-17600786

ABSTRACT

Linear copolymers have been developed which carry binding sites tailored for sulfated sugars. All binding monomers are based on the methacrylamide skeleton and ensure statistical radical copolymerization. They are decorated with o-aminomethylphenylboronates for covalent ester formation and/or alkylammonium ions for noncovalent Coulomb attraction. Alcohol sidechains maintain a high water solubility; a dansyl monomer was constructed as a fluorescence label. Statistical copolymerization of comonomer mixtures with optimized ratios was started by AIBN (AIBN=2,2'-azoisobutyronitrile) and furnished water-soluble comonomers with an exceptionally high affinity for glucosaminoglucans. Heparin can be quantitatively detected with an unprecedented 30 nM sensitivity, and a neutral polymer without any ammonium cation is still able to bind the target with almost micromolar affinity. From this unexpected result, we propose a new binding scheme between the boronate and a sulfated ethylene glycol or aminoethanol unit. Although the mechanism of heparin binding involves covalent boronate ester formation, it can be completely reversed by protamine addition, similar to heparin's complex formation with antithrombin III.


Subject(s)
Heparin/chemistry , Polymers/chemistry , Fluorescence , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
6.
J Am Chem Soc ; 128(2): 637-48, 2006 Jan 18.
Article in English | MEDLINE | ID: mdl-16402852

ABSTRACT

We have investigated the spectroscopic and electrochemical behavior of symmetric and unsymmetric first-, second-, and third-generation dendrimers comprising an electron-acceptor 4,4'-bipyridinium core (viologen type) and electron-donor 1,3-dimethyleneoxybenzene (Fréchet-type) dendrons. The quite strong fluorescence of the symmetrically and unsymmetrically disubstituted 1,3-dimethyleneoxybenzene units of the dendrons is completely quenched as a result of donor-acceptor interactions that are also evidenced by a low-energy tail in the absorption spectrum. In dichloromethane solution, the 4,4'-bipyridinium cores of the investigated dendrimers are hosted by a molecular tweezer comprising a naphthalene and four benzene components bridged by four methylene units. Host-guest formation causes the quenching of the tweezer fluorescence. The association constants, as measured from fluorescence and (1)H NMR titration plots, (i) are of the order of 10(4) M(-1), (ii) decrease on increasing dendrimer generation, and (iii) are slightly larger for the unsymmetric than for the symmetric dendrimer of the same generation. The analysis of the complexation-induced shifts of the temperature-dependent (1)H NMR signals of the host and guest protons confirms that the bipyridinium core is positioned inside the tweezer cavity and allows the conclusions that (i) shuttling of the tweezer from one to the other pyridinium ring is fast (DeltaG < 10 kcal/mol), (ii) in the case of the unsymmetric dendrimers, the less substituted pyridinium ring is preferentially complexed in apolar solvents, and (iii) complexation of the 4,4'-bipyridinium core proceeds by clipping for the symmetric dendrimers and by threading in the case of unsymmetric ones. Host-guest formation causes a displacement of the first reduction wave of the 4,4'-bipyridinium unit toward more negative potential values, whereas the second reduction wave is unaffected. These results show that the host-guest complexes between the tweezer and the dendrimers are stabilized by electron donor-acceptor interactions and can be reversibly assembled/disassembled by electrochemical stimulation.

7.
Chemistry ; 12(6): 1629-41, 2006 Feb 08.
Article in English | MEDLINE | ID: mdl-16331717

ABSTRACT

The dynamics in the host-guest complexes of the molecular tweezers 1 a,b and clips 2 a,b with 1,2,4,5-tetracyanobenzene (TCNB, 3) and tropylium tetrafluoroborate (4) as guest molecules were analyzed by temperature-dependent 1H NMR spectroscopy. The TCNB complexes of tweezers 1 a,b were found to be particularly stable (dissociation barrier: DeltaG(++)=16.8 and 15.7 kcal mol(-1), respectively), more stable than the TCNB complexes of clips 2 a,b and the tropylium complex of tweezer 1 b (dissociation barrier: DeltaG(++)=12.4, 11.2, and 12.3 kcal mol(-1), respectively). A detailed analysis of the kinetic and thermodynamic data (especially the negative entropies of activation found for complex dissociation) suggests that in the transition state of dissociation the guest molecule is still clipped between the aromatic tips of the host molecule. The 1H NMR analysis of the TCNB complexes 3@1 b and 3@2 a at low temperatures (T<-80 degrees C) showed that 3 undergoes fast rotation inside the cavity of tweezer 1 b or clip 2 a (rotational barrier: DeltaG( not equal)=11.7 and 8.3 kcal mol(-1), respectively). This rotation of a guest molecule inside the host cavity can be considered to be the dynamic equilibration of noncovalent conformers. In the case of clip complex 3@2 a the association and rotational barriers are smaller by DeltaDeltaG(++)=3-4 kcal mol(-1) than those in tweezer complexes 3@1 a,b. This can be explained by the more open topology of the trimethylene-bridged clips compared to the tetramethylene-bridged tweezers. Finally, the bromo substituents in the newly prepared clip 2 b have a substantial effect on the kinetics and thermodynamics of complex formation. Clip 2 b forms weaker complexes with (TCNB, 3) and tetracyanoquinodimethane (TCNQ, 12) and a more stable complex with 2,4,7-trinitrofluoren-9-ylidene (TNF, 13) than the parent clip 2 a. These results can be explained by a less negative electrostatic potential surface (EPS) inside the cavity and a larger van der Waals contact surface of 2 b compared to 2 a. In the case of the highly electron-deficient guest molecules TCNB and TCNQ the attractive electrostatic interaction is predominant and hence responsible for the thermodynamic complex stability, whereas in the case of TNF with its extended pi system, dispersion forces are more important for host-guest binding.

8.
Chemistry ; 9(20): 5036-47, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-14562321

ABSTRACT

The novel trimethylene-bridged clips 3 and 4 have been synthesized by using repetitive stereoselective Diels-Alder reactions of the benzo- and naphthobismethylenenorbornenes 8 and 19 as dienes and norbornadiene 9 as bisdienophile, and subsequent dehydrogenation of the primary cyclobisadducts 10 and 20 by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Clips 3 and 4 serve as receptors for a variety of electron-deficient neutral and cationic aromatic substrates, comparable to the molecular tweezers 1 and 2. The thermodynamic parameters of the complex formation, K(a) and DeltaG, were determined by (1)H NMR titration experiments and, in the case of the highly stable complex TCNB 32@4, by the use of isothermal titration microcalorimetry. The finding that clip 4 forms more stable complexes than 3 can be explained by the larger van der Waals contact surfaces of the naphthalene sidewalls in 4 compared to the corresponding benzene systems in 3. In the complexes with 4 as receptor, the plane of each aromatic substrate molecule is calculated to be oriented almost parallel to the naphthalene sidewalls. However, in the complexes of tweezers 2, the substrate is usually oriented parallel to the central naphthalene spacer unit. Due to the more open topology of 4, most complexes were calculated to consist of two or more equilibrating noncovalent conformers.

SELECTION OF CITATIONS
SEARCH DETAIL
...