Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 69(1): 124-140, 2021.
Article in English | MEDLINE | ID: mdl-33390514

ABSTRACT

Herein, we describe two counterexamples of the previously reported ß/α-selectivity of 96/4 for glycosylation using ethyl 2-O-[2,3,4-tris-O-tert-butyldimethylsilyl (TBS)-α-L-rhamnopyranosyl]-3,4,6-tris-O-TBS-thio-ß-D-glucopyranoside as the glycosyl donor. Furthermore, we investigated the effects of protecting group on the rhamnose moieties in the glycosylation with cholestanol and revealed that ß-selectivity originated from the two TBS groups at the 3-O and 4-O positions of rhamnose. In contrast, the TBS group at the 2-O position of rhamnose hampered the ß-selectivity. Finally, the ß/α-selectivity during the glycosylation was enhanced to ≥99/1. The results obtained herein suggest that the protecting groups on the sugar connected to the 2-O of a glycosyl donor with axial-rich conformation can control the stereoselectivity of glycosylation.


Subject(s)
Protective Agents/chemical synthesis , Rhamnose/chemistry , Sugars/chemistry , Carbohydrate Conformation , Glycosylation , Protective Agents/chemistry , Stereoisomerism
2.
J Am Chem Soc ; 134(16): 6940-3, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22475375

ABSTRACT

A completely ß-selective glycosylation that does not rely on neighboring group participation is described. The novelty of this work is the design of the glycosyl donor locked into the axial-rich form by the o-xylylene bridge between the 3-O and 6-O of d-glucopyranose. The synthesized 2,4-di-O-benzyl-3,6-O-(o-xylyene)glucopyranosyl fluoride could efficiently react with various alcohols in a SnCl(2)-AgB(C(6)F(5))(4) catalytic system. The mechanism composed of the glycosylation and isomerization cycles was revealed through comparative experiments using acidic and basic molecular sieves. The achieved perfect stereocontrol is attributed to the synergy of the axial-rich conformation and convergent isomerization caused by HB(C(6)F(5))(4) generated in situ.


Subject(s)
Glucose/analogs & derivatives , Xylenes/chemistry , Glucose/chemical synthesis , Glucose/chemistry , Glycosylation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...