Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(45): 13935-13942, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36322953

ABSTRACT

Electrophoretic separation of a fluorescent dye mixture, containing rhodamine B (RB) and fluorescein, in liquid foams stabilized by anionic, cationic, or non-ionic surfactants in water-glycerol mixtures was studied in a custom-designed foam separation device. The effects of the external electric field applied across the foam and the initial pH of the solution on the effectiveness of separation were also studied. The fluid motion due to electroosmosis and the resulting back pressure within the foam and local pH changes were found to be complex and affected the separation. Fluorescein dye molecules, which have a positive or negative charge depending on the solution pH, aggregated in the vicinity of an electrode, leaving a pure band of neutral dye RB. The effectiveness of the separation was quantified by the percentage width of the pure RB band, which was found to be between 29 and 42%. This study demonstrates the potential of liquid foam as a platform for electrophoretic separation.

2.
Langmuir ; 38(20): 6305-6321, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35546544

ABSTRACT

Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas-liquid and solid-liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas-liquid and solid-liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.

3.
Langmuir ; 36(5): 1183-1191, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31957457

ABSTRACT

Electrokinetic transport of a charged dye within a free liquid film stabilized by a cationic surfactant, trimethyl(tetradecyl)ammonium bromide, subjected to an external electric field was investigated. Confocal laser scanning microscopy was used to visualize fluorescein isothiocyanate (FITC) separation within the stabilized liquid film. Numerical simulations were performed using the finite element method to model the dynamics of charged dye separation fronts observed in the experiments. Because of the electrochemical reactions at the electrodes, significant spatial and temporal pH changes were observed within the liquid film. These local pH changes could affect the local zeta potential at the gas-liquid and solid-liquid film boundaries; hence, the flow field was found to be highly dynamic and complex. The charged dye (FITC) used in the experiments is pH-sensitive, and therefore, electrophoresis of the dye also depended on the local pH. The pH and the electroosmotic flow field predicted from the numerical simulations were useful for understanding charged dye separation near both the anode and the cathode.

4.
Electrophoresis ; 38(20): 2554-2560, 2017 10.
Article in English | MEDLINE | ID: mdl-28314051

ABSTRACT

Fluid flow profiles in free liquid films stabilised by anionic and cationic surfactants under an external electric field were investigated. Depthwise velocity fields were measured at the mid region of the free liquid film by confocal micron-resolution particle image velocimetry and corresponding numerical simulations were performed using Finite Element Method to model the system. Depthwise change in velocity profiles was observed with electroosmotic flow dominating in the vicinity of the gas-liquid and solid-liquid interfaces while backpressure drives fluid in the opposite direction at the core of the film. It was also found that the direction of the flow at various sections of the films depends on the type of surfactant used, but flow features remained the same. Numerical simulations predicted the flow profiles with reasonable accuracy; however, asymmetry of the actual film geometry caused deviations at the top half of the computational domain. Overall, electroosmotic flow profiles within a free liquid film are similar to that of the closed-end solid microchannel. However, the flow direction and features of the velocity profiles can be changed by selecting various types of surfactants. The free liquid films thickness was selected to match dimensions of foam Plateau border. Hence, these findings will be useful in developing a separation system based on foam electrokinetics.


Subject(s)
Computer Simulation , Electroosmosis/instrumentation , Microfluidic Analytical Techniques/methods , Electricity , Electrophoresis , Rheology , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...