Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-16, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147414

ABSTRACT

Malate dehydrogenase (MDH) exists in multimeric form in normal and extreme solvent conditions where residues of the interface are involved in specific interactions. The interface salt-bridge (ISB) and its microenvironment (ME) residues may have a crucial role in the stability and specificity of the interface. To gain insight into this, we have analyzed 218 ISBs from 42 interfaces of 15 crystal structures along with their sequences. Comparative analyses demonstrate that the ISB strength is ∼30 times greater in extremophilic cases than that of the normal one. To this end, the interface residue propensity, ISB design and pair selection, and ME-residue's types, i.e., type-I and type-II, are seen to be intrinsically involved. Although Type-I is a common type, Type-II appears to be extremophile-specific, where the net ME-residue count is much lower with an excessive net ME-energy contribution, which seems to be a novel interface compaction strategy. Furthermore, the interface strength can be enhanced by selecting the desired mutant from the net-energy profile of all possible mutations of an unfavorable ME-residue. The study that applies to other similar systems finds applications in protein-protein interaction and protein engineering.Communicated by Ramaswamy H. Sarma.

2.
Sci Rep ; 11(1): 11553, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078944

ABSTRACT

Salt-bridges play a key role in the thermostability of proteins adapted in stress environments whose intrinsic basis remains to be understood. We find that the higher hydrophilicity of PfP than that of HuP is due to the charged but not the polar residues. The primary role of these residues is to enhance the salt-bridges and their ME. Unlike HuP, PfP has made many changes in its intrinsic property to strengthen the salt-bridge. First, the desolvation energy is reduced by directing the salt-bridge towards the surface. Second, it has made bridge-energy more favorable by recruiting energetically advantageous partners with high helix-propensity among the six possible salt-bridge pairs. Third, ME-residues that perform intricate interactions have increased their energy contribution by making major changes in their binary properties. The use of salt-bridge partners as ME-residues, and ME-residues' overlapping usage, predominant in helices, and energetically favorable substitution are some of the favorable features of PfP compared to HuP. These changes in PfP reduce the unfavorable, increase the favorable ME-energy. Thus, the per salt-bridge stability of PfP is greater than that of HuP. Further, unfavorable target ME-residues can be identified whose mutation can increase the stability of salt-bridge. The study applies to other similar systems.


Subject(s)
Hot Temperature , Prolyl Oligopeptidases/metabolism , Pyrococcus furiosus/enzymology , Enzyme Stability , Hydrophobic and Hydrophilic Interactions , Prolyl Oligopeptidases/chemistry , Static Electricity , Thermodynamics
3.
J Biomol Struct Dyn ; 39(5): 1661-1671, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32107984

ABSTRACT

Alkaptonuria (AKU) is an autosomal recessive disorder, which is caused by a site-specific mutation(s) and thus, impaired the function of Homogentisate-1, 2-dioxygenase (HGD), an essential enzyme for the catabolism of phenylalanine and tyrosine. Among frameshift, intronic, splice-site and missense mutations, the latter has been the most common form of genetic variations for the disease. How do the acquired mutations in HGD correlate with the disease? Systematic staged-screening of some sixty-five mutations, which are known to have a relation with the disease, by GVGD, SIFT, SNAP, PANTHER, SDM, PHD-SNP, Meta-SNP, Pmut and Mutpred methods, showed that mutations, W60G, A122D and V300G are potentially related with the severity of AKU. Detailed analyses on molecular docking and molecular dynamics simulation (MDS) of these mutants against the wild-type HGD reveal the loss of structural and molecular dynamic properties of the enzyme. Further, the observed conformational flexibility in mutants at targeted peptide segments seems to have a relation with the impairment of the function of HGD. Taken together, the study involves a designed computational methodology to analyse the disease-associated nsSNPs for AKU, the knowledge of which seems to have potential applications in drug therapies for the disease in particular and other similar systems in general.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alkaptonuria , Homogentisate 1,2-Dioxygenase/genetics , Genes, Lethal , Humans , Molecular Docking Simulation , Mutation
4.
Heliyon ; 6(11): e05359, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33241136

ABSTRACT

Tannase is an inducible industrially important enzyme, produced by several microorganisms. A large number of bacteria have reported as tannase producers; however, some of them are pathogenic in nature. Therefore, it is quite uncertain whether the application of these tannase enzymes from such pathogenic bacteria is suitable for industries and human welfare. Till date, there is no clear evidence regarding which group of bacteria (non-pathogenic or pathogenic) is better suited for their application in the edge of industries with particular reference to the food industry. The present study is following the findings of the above queries. In this study, a large number of tannase protein sequences have been retrieved from the databases, including both non-pathogenic and pathogenic bacterial species. Physiochemical and evolutionary properties of those sequences have been evaluated. Results have shown that non-pathogenic bacterial tannase possesses a high number of acidic and basic amino acid residues as compared to their pathogenic counterparts. The acidic and basic amino acid residues of tannase provide unique microenvironment to it. In the other hand, the numbers of disorder forming residues are higher in tannase sequences of pathogenic bacteria. The study of tannase microenvironment leads in the formation of salt bridges, which finally favoring the stability and proper functioning of tannase. This is the first report of such observation on tannase enzyme using in silico approach. Study of the microenvironment concept will be helpful in protein engineering.

5.
Bioinformation ; 16(11): 900-909, 2020.
Article in English | MEDLINE | ID: mdl-34803266

ABSTRACT

Salt-bridges (sb) play an important role in the folding and stability of proteins. This is deduced from the evaluation of net energy in the microenvironments (ME, residues that are 4 Å away from positive and negative partners of salt-bridge and interact with them). MEs act as a determinant of net-energy due to the intrinsic features in the sequence. The stability of extremophilic proteins is due to the presence of favorable residues at the ME without any unfavorable residues. We studied a dataset of four structures from the protein data bank (PDB) and a homology model (1HM5) to gain insights on this issue. Data shows that the presence of isolated charges and polar residues in the core of extremophilic proteins helps in the formation of stable salt-bridges with reduced desolvation. Thus, site-specific mutations with favorable residues at the ME will help to develop thermo stable proteins with strong salt bridges.

6.
Bioinformation ; 15(2): 79-89, 2019.
Article in English | MEDLINE | ID: mdl-31435153

ABSTRACT

We analyzed the water-ferredoxin interaction in mesophilic (moderate temperature) algae (PDB ID: 1AWD) and halophilic (salt-tolerant) archaea (PDB ID: 1DOI) using POWAIND version 2.0 (a protein-water interactions calculation program). It is found that the shell water (SW) is 2.5 fold greater in halophilic ferredoxin than mesophilic ferredoxin. Water-ferredoxin interactions in the core and cavity are the signature of stability. The normalized frequency of such interactions is less in halophilic relative to mesophilic ferredoxin and the halophilic signature for stability by such interactions is negligible. However, the surface dominated with such interactions seems to be important for ferredoxin and oxido-reductase recognition.

7.
Bioinformation ; 15(2): 95-103, 2019.
Article in English | MEDLINE | ID: mdl-31435155

ABSTRACT

Halophilic proteins have greater abundance of acidic over basic residues in sequence. In structure, the surface is decorated by negative charges, with lower content of Lysine. Using sequence BLOCKs and 3D model of malate dehydrogenase from halophilic archaea (Halobacterium salinarum; hsMDH) and X-ray structure from mesophilic bacteria (E. coli; ecMDH), we show that not only acidic and basic residues have higher mean relative abundance (MRA) and thus, impart higher polarity to the sequences, but also show their presence in the surface of the structure of hsMDH relative to its mesophilic counterpart. These observations may indicate that both the acidic and the basic residues have a concerted role in the stability of hsMDH. Analysis on salt bridges from hsMDH and ecMDH show that in the former, salt bridges are highly intricate, newly engineered and global in nature. Although, these salt bridges are abundant in hsMDH, in the active site the design remains unperturbed. In high salt where hydrophobic force is weak, these salt bridges seem to play a major role in the haloadaptation of the tertiary structure of hsMDH. This is the first report of such an observation.

8.
Bioinformation ; 15(1): 61-67, 2019.
Article in English | MEDLINE | ID: mdl-31360001

ABSTRACT

Thermophilic proteins function at high temperature, unlike mesophilic proteins. Thermo-stability of these proteins is due to the unique buried and networked salt-bridge (BNSB). However, it is known that the desolvation cost of BNSB is too high compared to other favorable energy terms. Nonetheless, it is known that stability is provided generally by hydrophobic isosteres without the need for BNSB. We show in this analysis that the BNSB is the optimal evolutionary design of salt-bridge to offset desolvation cost efficiently. Hence, thermophilic proteins with a high level of BNSB provide thermo-stability.

9.
Bioinformation ; 15(3): 214-225, 2019.
Article in English | MEDLINE | ID: mdl-31354198

ABSTRACT

Hyper thermophilic archaea not only tolerate high temperature but also operate its biochemical machineries, normally under these conditions. However, the structural signatures in proteins that answer for the hyper thermo-stability relative to its mesophilic homologue remains poorly understood. We present comparative analyses of sequences, structures and salt-bridges of prolyl-oligopeptidase from Pyrococcus furiosus (pfPOP - PDB ID: 5T88) and human (huPOP - PDB ID: 3DDU). A similar level of hydrophobic and hydrophilic residues in pfPOP and huPOP is observed. A low level of interactions between shell-waters and atom-types in pfPOP indicated hyper thermophilic features are negligible. Salt-bridge-forming-residues (sbfrs) are high in pfPOP's core and surface (pfPOP). Increased sbfrs largely indicate specific-electrostatic is important for thermo stability in pfPOP. Four classes of sbfrs are found namely positionally non-conservative (PNCS), conservative (PCS), unchanged (PU) and interchanged (PIC) type of substitutions. PNCS-sbfrs constitutes 28% and it is associated with the topology of pfPOP at high temperature. PCS helps to increase the salt-bridge population. It is also found that PU maintains similar salt-bridges at the active site and other binding sites while PIC abolishes mesophilic patterns.

10.
Bioinformation ; 14(5): 190-193, 2018.
Article in English | MEDLINE | ID: mdl-30108414

ABSTRACT

Residues in allelic positions, in the local segment of aligned sequences of proteins show wide variations. Here, we describe PROPAB that computes the propensity tables for helix, strand and coil types from multiple 3D structure files following ab initio statistical procedure. It also classifies them in range specific and chain specific manners. It further computes percentage composition and physicochemical properties along with residues propensities. It also prepares FASTA files for different segments (helix, strand and coil) in the exact order that they follow in the sequence. Representative analyses on orthologous (homologous across species) proteins demonstrate wide segmental variations of physicochemical properties. Such variations provide insights to relate the adaptation of these proteins in a given functional constraint under diverse environmental conditions. Thus, the program finds applications in the structural and evolutionary analysis of proteins. AVAILABILITY: PROPAB is freely available at http://sourceforge.net/projects/propab/for worldwide user.

11.
Int J Biol Macromol ; 112: 818-830, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29421493

ABSTRACT

Liver cancer is a leading cause of death related to cancer worldwide. Poly(d-l-lactide-co-glycolide) (PLGA) nanoparticles provide prolonged blood residence time and sustained drug release, desirable for cancer treatment. To achieve this, we have developed paclitaxel-loaded PLGA nanoparticles by emulsification solvent evaporation method and evaluated by in vitro and in vivo studies. The results obtained from in vitro study showed that drug loading efficiency was 84.25% with an initial burst release followed by sustained drug release. Cellular uptake and in vitro cytotoxicity of the formulated nanoparticles using HepG2, Huh-7 cancer cells and Chang liver cells were also investigated. The formulated nanoparticles showed more cytotoxic effect at lower concentration and were internalized well by HepG2 cells compared to free-drug and marketed formulation. Prolonged half-life and higher plasma and liver drug concentrations of the formulated nanoparticles were observed as compared to free drug and marketed formulation in rats. Thus, paclitaxel-loaded polymeric nanoparticle has shown its potential for the treatment of liver cancer.


Subject(s)
Drug Delivery Systems , Lactic Acid/chemistry , Liver/metabolism , Nanoparticles/chemistry , Paclitaxel/pharmacokinetics , Polyglycolic Acid/chemistry , Animals , Calorimetry, Differential Scanning , Cell Survival/drug effects , Drug Liberation , Endocytosis/drug effects , Hep G2 Cells , Humans , Hydrolysis , Kinetics , Lipid Peroxidation/drug effects , Liver/drug effects , Male , Malondialdehyde/metabolism , Nanoparticles/ultrastructure , Paclitaxel/administration & dosage , Paclitaxel/blood , Paclitaxel/pharmacology , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Static Electricity , Tissue Distribution/drug effects
12.
Bioinformation ; 14(9): 525-529, 2018.
Article in English | MEDLINE | ID: mdl-31435151

ABSTRACT

Global minimal structure of protein/enzyme is energetically compromised that maintains an intricate balance between the rigidity and the flexibility. Such a state makes it interactive to its ligand molecules. Although protein data bank files (PDB) may have achieved the state, in many situations minimization has been crucial to overcome unwanted steric clashes, and other conformational strains. It is more so, when orthologous PDB structures that are intended in a given study, show variations in resolution, R-factor, shell-water contents, loop characteristics etc. Here, a fully automated procedure of minimization would be highly useful. AUTOMINv1.0 is such an automation of minimization that runs on any number of structure files with any number of chains in them along with the inclusion of selective/non-selective shell-waters interacting with polar and or non-polar atom-types of protein. Comparison of the mean binaryitems of salt-bridges of minimized and un-minimized structures (chains > 100) of nucleoside diphosphate kinase from mimi virus shows dramatic improvements in the earlier. Again, the mean steric clashes of 2AZ3.pdb are reduced upon minimization. Remarkably, the observed steric clashes between shell-waters and atom-types of protein are seen to be removed upon minimization. Taken together, AUTOMINv1.0 is an automation of minimization that finds applications in structural bioinformatics.

13.
BMC Immunol ; 18(1): 13, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28264652

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes Japanese Encephalitis (JE) and Acute Encephalitis Syndrome (AES) in humans. Genotype-I (as co-circulating cases with Genotype-III) was isolated in 2010 (JEV28, JEV21) and then in 2011 (JEV45) from Midnapur district, West Bengal (WB) for the first time from clinical patients who were previously been vaccinated with live attenuated SA14-14-2 strain. We apply bioinformatics and immunoinformatics on sequence and structure of E protein for analysis of crucial substitutions that might cause the genotypic transition, affecting protein-function and altering specificity of epitopes. RESULTS: Although frequency of substitutions in E glycoprotein of JEV28, JEV21 and JEV45 isolates vary, its homologous patterns remain exactly similar as earlier Japan isolate (Ishikawa). Sequence and 3D model-structure based analyses of E protein show that only four of all substitutions are critical for genotype-I specific effect of which N103K is common among all isolates indicating its role in the transition of genotype-III to genotype-I. Predicted B-cell and T-cell epitopes are seen to harbor these critical substitutions that affect overall conformational stability of the protein. These epitopes were subjected to conservation analyses using a large set of the protein from Asian continent. CONCLUSIONS: The study identifies crucial substitutions that contribute to the emergence of genotype-I. Predicted epitopes harboring these substitutions may alter specificity which might be the reason of reported failure of vaccine. Conservation analysis of these epitopes would be useful for design of genotype-I specific vaccine.


Subject(s)
B-Lymphocytes/immunology , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/immunology , Epitopes/metabolism , Polymorphism, Single Nucleotide , T-Lymphocytes/immunology , Viral Envelope Proteins/metabolism , Animals , B-Lymphocytes/virology , Computational Biology , Computer Simulation , Culicidae , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/virology , Endemic Diseases , Epitope Mapping , Epitopes/genetics , Epitopes/immunology , Genotype , Humans , India , Mutation/genetics , Protein Conformation , T-Lymphocytes/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
14.
Drug Deliv ; 24(1): 346-357, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28165821

ABSTRACT

Docetaxel (DTX) is found to be very effective against glioma cell in vitro. However, in vivo passage of DTX through BBB is extremely difficult due to the physicochemical and pharmacological characteristics of the drug. No existing formulation is successful in this aspect. Hence, in this study, effort was made to send DTX through blood-brain barrier (BBB) to brain to treat diseases such as solid tumor of brain (glioma) by developing DTX-loaded nanoliposomes. Primarily drug-excipients interaction was evaluated by FTIR spectroscopy. The DTX-loaded nanoliposomes (L-DTX) were prepared by lipid layer hydration technique and characterized physicochemically. In vitro cellular uptake in C6 glioma cells was investigated. FTIR data show that the selected drug and excipients were chemically compatible. The unilamellar vesicle size was less than 50 nm with smooth surface. Drug released slowly from L-DTX in vitro in a sustained manner. The pharmacokinetic data shows more extended action of DTX from L-DTX in experimental rats than the free-drug and Taxotere®. DTX from L-DTX enhanced 100% drug concentration in brain as compared with Taxotere® in 4 h. Thus, nanoliposomes as vehicle may be an encouraging strategy to treat glioma with DTX.


Subject(s)
Brain Neoplasms/metabolism , Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Taxoids/administration & dosage , Taxoids/metabolism , Administration, Intravenous , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Brain Neoplasms/drug therapy , Cell Survival/drug effects , Cell Survival/physiology , Docetaxel , Liposomes , Male , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley , Taxoids/chemistry , Treatment Outcome
15.
Acta Biomater ; 38: 69-81, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27109765

ABSTRACT

UNLABELLED: Somatostatin receptors (SSTRs) especially subtype 2 (SSTR2) are overexpressed in glioma. By taking advantage of the specific expression of SSTR2 on both glioma neovasculature endothelial cells and glioma cells, we constructed Tyr-3-octreotide (TOC)-modified solid lipid nanoparticles (SLN) loaded with paclitaxel (PTX) to enable tumor neovasculature and tumor cells dual-targeting chemotherapy. In this work, a TOC-polyethylene glycol-lipid (TOC-PEG-lipid) was successfully synthesized and used as a targeting molecule to enhance anticancer efficacy of PTX loaded sterically stabilized lipid nanoparticles. The prepared PTX-loaded SLN modified with TOC (PSM) was characterized by standard methods. In rat C6 glioma cells, PSM improved PTX induced apoptosis. Both tube formation assay and CD31 staining of treated orthotopic glioma tissues confirmed that PSM significantly improved the antiangiogenic ability of PTX in vitro and in vivo, respectively. Radiolabelled PSM achieved a much higher and specific accumulation within the glioma as suggested by the biodistribution and imaging studies. Furthermore, PSM exhibited improved anti-glioma efficacy over unmodified nanoparticles and Taxol in both subcutaneous and orthotopic tumor models. These findings collectively indicate that PSM holds great potential in improving the efficacy of anti-glioma therapy. STATEMENT OF SIGNIFICANCE: Somatostatin receptors (SSTRs) especially subtype 2 (SSTR2) are overexpressed in various mammalian cancer cells. Proliferating endothelial cells of neovasculature also express SSTR2. Tyr-3-octreotide (TOC) is a known ligand for SSTR2. We have successfully prepared paclitaxel-loaded solid lipid nanoparticles modified with TOC (PSM) having diameter less than 100nm. We found that PSM improved anti-cancer efficacy of paclitaxel in SSTR2 positive glioma of rats. This improved anti-glioma efficiency of PSM can be attributed to dual-targeting (i.e. tumor cell and neovasculature targeting) efficiency of PSM and promoted anti-cancer drug accumulation at tumor site due to TOC modification of solid lipid nanoparticles. This particular study aims at widening the scope of octreotide-derivative modified nanocarrier by exploring dual-targeting potential of PSM.


Subject(s)
Drug Carriers , Glioma , Lipids , Nanoparticles , Neovascularization, Pathologic , Octreotide/analogs & derivatives , Paclitaxel , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/pharmacology , Glioma/blood supply , Glioma/drug therapy , Glioma/metabolism , Lipids/chemistry , Lipids/pharmacology , Mice , NIH 3T3 Cells , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Octreotide/chemistry , Octreotide/pharmacology , Paclitaxel/chemistry , Paclitaxel/pharmacology , Rats
16.
Bioinformation ; 11(8): 413-5, 2015.
Article in English | MEDLINE | ID: mdl-26420923

ABSTRACT

UNLABELLED: Component (bridge: ΔΔGbrd , background: ΔΔGprot , desolvation: ΔΔGdsolv ) and net (ΔΔGnet ) energy-terms of salt-bridge-structure (SBS) are auto-generated by the program ADSBET that makes use of general purpose Adaptive Poison Boltzmann Solver (APBS) method. While the procedure reports gross energy terms (Kcal Mol(-1) ), report on bond-multiplicity corrected normalized energyterms (Kcal Mol(-1) Bond(-1) ) along with their accessibility (ASA) in monomer, isolated-SBS (ISBS) and networked-SBS (NSBS) format would be very useful for statistical comparison among SBSs and understanding their location in protein structure. In this end, ADSBET2 potentially incorporates these features along with additional model for side-chain. Gross and normalized energy-terms are redirected in monomer, ISBS and NSBS format along with their ASA informations. It works on any number of SBSs for any number of structure files present in a database. Taken together, ADSBET2 has been suitable for statistical analyses of SBSs energetics and finds applications in protein engineering and structural bioinformatics. AVAILABILITY: ADSBET2 is freely available at http://sourceforge.net/projects/ADSBET2/ for all users.

17.
Bioinformation ; 11(1): 39-42, 2015.
Article in English | MEDLINE | ID: mdl-25780279

ABSTRACT

UNLABELLED: Specific electrostatics (i.e. salt-bridge) includes both local and non-local interactions that contribute to the overall stability of proteins. It has been shown that a salt-bridge could either be buried or exposed, networked or isolated, hydrogen-bonded or nonhydrogen bonded, in secondary-structure or in coil, formed by single or multiple bonds. Further it could also participates either in intra- or inter-dipole interactions with preference in orientation either for basic residue at N-terminal (orientation-I) or acidic residue at N-terminal (orientation-II). In this context SBION2 is unique in that it reports above mentioned binary items in excel format along with details on intra and inter-dipole interactions and orientations. These results are suitable for post run statistical analyses involving large datasets. Reports are also made on protein-protein interactions, intervening residue distances and general residue specific salt-bridge details. A ready to use compact supplementary table is also produced. The program runs in three alternative modes. Each mode works on any number of structure files with any number of chains at any given atomic distance of ion-pair. Thus SBION2 provides intricate details on salt-bridges and finds application in structural bioinformatics. AVAILABILITY: SBION2 is freely available at http://sourceforge.net/projects/sbion2/ for academic users.

18.
Drug Dev Ind Pharm ; 39(11): 1742-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23216220

ABSTRACT

AIM: The objective of our present study was to prepare solid self-microemulsion in the form of tablet of a poorly water soluble drug, Atorvastatin calcium (ATNC) to increase the solubility, dissolution rate, and minimize the hazards experienced from liquid emulsions. MATERIALS AND METHODS: Self-microemulsifying ATNC tablet was formulated mainly by using self-emulsifying base, solidifying agent silicon dioxide and sodium starch glycolate as tablet disintegrant. Self-emulsifying base containing Transcutol P, Gelucire 44/14, and Lutrol F68 with their ratios in the formulation, were best selected by solubility study and ternary phase diagram in different vehicles. Particle size of microemulsion from tablet, physical parameters of the tablet and drug content has been checked. In vitro drug release rate has been carried out in phosphate buffer medium (pH 6.8). Physicochemical characterization of the drug in the optimized formulation has been performed to check drug-excipient incompatibility, if any. RESULTS: Average particle diameter of the emulsions formed from the tablet was found to be below 100 nm in case of formulation F4 and F5, which indicated microemulsions has been formed. In vitro drug release from the formulations F3, F4, and F5 was found to be >90%, indicated the enhancement of solubility of ATNC compared to parent drug. Differential thermal analysis (DTA), Powder X-ray Diffraction (X-RD) and Fourier transform infra red (FTIR) study proved the identity of the drug in the optimized formulation. CONCLUSION: The tablet form of self-microemulsifying (SME) drug delivery is good for solubility enhancement.


Subject(s)
Anticholesteremic Agents/chemistry , Excipients/chemistry , Heptanoic Acids/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Pyrroles/chemistry , Anticholesteremic Agents/analysis , Atorvastatin , Chemical Phenomena , Differential Thermal Analysis , Drug Compounding , Emulsions , Heptanoic Acids/analysis , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Hydroxymethylglutaryl-CoA Reductase Inhibitors/analysis , Kinetics , Mechanical Phenomena , Particle Size , Powder Diffraction , Pyrroles/analysis , Quality Control , Silicon Dioxide/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Starch/analogs & derivatives , Starch/chemistry , Tablets
19.
Braz. j. pharm. sci ; 47(4): 817-823, Oct.-Dec. 2011. graf, tab
Article in English | LILACS | ID: lil-618075

ABSTRACT

Nasal drug delivery systems prepared from natural materials are gaining importance in the field of pharmaceutical technology. Mucilage isolated from Linum usitatissimum L. (LUM) seeds was reported to be an effective natural mucoadhesive agent. The present study deals with a comparison of various characteristics of nasal gels containing midazolam hydrochloride (HCl) prepared from mucoadhesive agent extracted from Linum usitatissimum L. seeds and synthetic polymers like HPMC and Carbopol 934P in terms of texture profile analysis, mucoadhesive strength, and in vivo drug absorption profiles. It was observed that gels formulated with the natural mucilage showed better results than the synthetic gels in all aspects like hardness, adhesiveness, cohesiveness and mucoadhesive strength. The absolute bioavailability of midazolam hydrochloride from the natural gel was 97.55 percent whereas that of synthetic gels was 57.33 percent and 76.81 percent respectively.


Sistemas de liberação nasal preparados com produtos naturais estão ganhando importância no campo da tecnologia farmacêutica. A mucilagem isolada de sementes de Linum usitatissimum L. (LUM) mostrou-se agente mucoadesivo eficaz. O presente estudo trata da comparação de várias características de géis nasais contendo cloridrato de midazolam preparados com agente mucoadesivo extraído das sementes de Linum usitatissimum L. e com polímeros sintéticos, como HPMC e Carbopol 943P, com relação ao perfil de textura, força mucoadesiva e perfis de absorção do fármaco in vivo. Observou-se que os géis formulados com mucilagem natural apresentam melhores resultados do que os sintéticos em todos os aspectos, como dureza, adesão, coesão e força mucoadesiva. A biodisponibilidade absoluta do cloridrato de midazolam a partir do gel natural foi de 97,55 por cento, enquanto que nos géis sintéticos foi de 57,33 por cento e 76,81 por cento, respectivamente.


Subject(s)
Nasal Decongestants/pharmacokinetics , /therapeutic use , Plant Mucilage/pharmacokinetics , Midazolam/pharmacokinetics , Adhesiveness
20.
AAPS PharmSciTech ; 11(3): 1223-31, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20683687

ABSTRACT

The objective of the present study was to prepare mucoadhesive in situ nasal gels with mucilage isolated from fig fruits (Ficus carica, family: Moraceae) containing midazolam hydrochloride. Nasal gels of midazolam were prepared using three different concentrations (0.5%, 1.0% and 1.5% w/v) of F. carica mucilage (FCM) and synthetic polymers (hydroxypropylmethyl cellulose and Carbopol 934). Evaluation of FCM showed that it was as safe as the synthetic polymers for nasal administration. In situ gels were prepared with mixture Pluronic F127 and mucoadhesive agents. Evaluation of the prepared gels was carried out, including determination of viscosity, texture profile analysis and mucoadhesive strength. In vitro drug permeation study was conducted with the gels prepared with and without permeation enhancer (0.5% w/v sodium taurocholate) using excised goat nasal mucosa. In vitro permeation profiles were evaluated, and histological study of nasal mucosae before and after permeation study was also conducted to determine histological change, if any. In vivo experiments conducted in rabbits further confirmed that in situ nasal gels provided better bioavailability of midazolam than the gels prepared from synthetic mucoadhesive polymers. It was observed that the nasal gel containing 0.5% FCM and 0.5% sodium taurocholate exhibited appropriate rheological, mechanical and mucoadhesive properties and showed better drug release profiles. Moreover, this formulation produced no damage to the nasal mucosa that was used for the permeation study, and absolute bioavailability was also higher compared to gels prepared from synthetic polymers.


Subject(s)
Adhesives/chemistry , Ficus/chemistry , Midazolam/administration & dosage , Midazolam/pharmacokinetics , Nasal Mucosa/chemistry , Nasal Mucosa/metabolism , Plant Extracts/chemistry , Adhesiveness , Administration, Mucosal , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/chemistry , Anticonvulsants/pharmacokinetics , Drug Carriers/chemistry , Gels , Male , Midazolam/chemistry , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...