Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619800

ABSTRACT

Booster doses are crucial against severe COVID-19, as rapid virus mutations and variant emergence prolong the pandemic crisis. The virus's quick evolution, short generation-time, and adaptive changes impact virulence and evolvability, helping predictions about variant of concerns' (VOCs') landscapes. Here, in this study, we used a new computational algorithm, to predict the mutational pattern in SARS-CoV-2 ssRNA, proteomics, structural identification, mutation stability, and functional correlation, as well as immune escape mechanisms. Interestingly, the sequence diversity of SARS Coronavirus-2 has demonstrated a predominance of G- > A and C- > U substitutions. The best validation statistics are explored here in seven homologous models of the expected mutant SARS-CoV-2 spike ssRNA and employed for hACE2 and IgG interactions. The interactome profile of SARS-CoV-2 spike with hACE2 and IgG revealed a strong correlation between phylogeny and divergence time. The systematic adaptation of SARS-CoV-2 spike ssRNA influences infectivity and immune escape. Data suggest higher propensity of Adenine rich sequence promotes MHC system avoidance, preferred by A-rich codons. Phylogenetic data revealed the evolution of SARS-CoV-2 lineages' epidemiology. Our findings may unveil processes governing the genesis of immune-resistant variants, prompting a critical reassessment of the coronavirus mutation rate and exploration of hypotheses beyond mechanical aspects.

2.
Biomol Concepts ; 15(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38451915

ABSTRACT

Alzheimer's disease (AD) is characterized by immune system dysregulation, impacting both central and peripheral immune responses. The study aimed to investigate the mechanism behind the neurotoxic effects of ß-amyloid (Aß) peptide in the rat brain including the study of neuroinflammation, neurodegeneration, and alterations in peripheral immune responses (PIR). The neuroinflammation brought on by Aß1-42 and is unknown to influence PIR. Animal models were prepared, after 28 days, control, sham, and treated rats were anaesthetized and inflammatory markers of hippocampus and serum levels (reactive oxygen species, nitrite, tumor necrosis factor-α, and interleukin-1ß), and some markers of PIR (splenic mononuclear cells or MNC, cytotoxicity and phagocytic index of the white blood cells leukocyte adhesion inhibition index or LAI), as well as polymorphonuclear cells of the spleen, were assessed. In addition to changes in peripheral immune responses, the present study found that AD rats had higher blood levels of inflammatory markers. Based on the study, the immune system irregularities observed in AD rats in the peripheral regions might be connected to neuroinflammation, which is facilitated by a compromised blood-brain barrier. Hence, it is viable to propose that the neuroinflammatory condition in rats with Aß-induced AD could modify immune responses in the peripheral areas with significantly higher levels of inflammatory cytokines markers in the hippocampal tissue in Aß-injected AD rats.


Subject(s)
Alzheimer Disease , Neuroinflammatory Diseases , Rats , Animals , Amyloid beta-Peptides , Cytokines , Immunity , Disease Models, Animal
3.
J Am Nutr Assoc ; 43(2): 183-200, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37579058

ABSTRACT

Lemongrass contains a variety of substances that are known to have antioxidant and disease-preventing properties, including essential oils, compounds, minerals, and vitamins. Lemongrass (Cymbopogon Spp.) essential oil (LGEO) has been demonstrated to ameliorate diabetes and accelerate wound healing. A member of the Poaceae family, Lemongrass, a fragrant plant, is cultivated for the extraction of essential oils including myrcene and a mixture of geranial and neral isomers of citral monoterpenes. Active constituents in lemongrass essential oil are myrcene, followed by limonene and citral along with geraniol, citronellol, geranyl acetate, neral, and nerol, which are beneficial to human health. A large part of lemongrass' expansion is driven by the plant's huge industrial potential in the food, cosmetics, and medicinal sectors. A great deal of experimental and modeling study was conducted on the extraction of essential oils. Using Google Scholar and PubMed databases, a systematic review of the literature covering the period from 1996 to 2022 was conducted, in accordance with the PRISMA declaration. There were articles on chemistry, biosynthesis, extraction techniques and worldwide demand of lemongrass oil. We compared the effectiveness of several methods of extracting lemongrass essential oil, including solvent extraction, supercritical CO2 extraction, steam distillation, hydrodistillation (HD), and microwave aided hydrodistillation (MAHD). Moreover, essential oils found in lemongrass and its bioactivities have a significant impact on human health. This manuscript demonstrates the different extraction techniques of lemongrass essential oil and its physiological benefits on diabetic wound healing, tissue repair and regeneration, as well as its immense contribution in ameliorating arthritis and joint pain.Key teaching pointsThe international market demand prediction and the pharmacological benefits of the Lemongrass essential oil have been thoroughly reported here.This article points out that different extraction techniques yield different percentages of citral and other secondary metabolites from lemon grass, for example, microwave assisted hydrodistillation and supercritical carbon dioxide extraction process yields more citral.This article highlights the concept and application of lemongrass oil in aromatherapy, joint-pain, and arthritis.Moreover, this manuscript includes a discussion about the effect of lemongrass oil on diabetic wound healing and tissue regeneration - that paves the way for further research.


Subject(s)
Acyclic Monoterpenes , Alkenes , Arthritis , Cymbopogon , Diabetes Mellitus , Oils, Volatile , Plant Oils , Terpenes , Humans , Cymbopogon/chemistry , Oils, Volatile/pharmacology
4.
World J Microbiol Biotechnol ; 39(10): 270, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37537416

ABSTRACT

Mushroom cultivation has been identified as a cost-effective technique for converting lignocellulosic wastes. This study utilized a combination of two distinct agro-wastes as a substrate for better Pleurotus ostreatus cultivation. Oyster mushroom has been cultivated on substrates made up of rice straw and sugarcane bagasse with different ratios. This technique gives a significant difference between mycelium running, fruit body formation, yield, biological efficiency, and better-quality taste of Pleurotus ostreatus mushroom. A minimum of 19 days were required for 1st harvesting from bag number T4 where substrate ratio was used at 3:2. The maximum yield was found as T4 (886 g/kg) in bag number on the dry substrate from the first flushing. According to proximate analyses, protein contents were increased in treatment bags compared with the control. Anyhow, the enrichment of L-glutamine content in the fruit body was found at 11.8 mg/g from 1st flushing in T4 bag, among the other bags and the flavour was changed due to the substrate level composition. According to the study, 3:2 is an ideal substrate ratio for the development of oyster mushrooms cultivation. According to this ratio, it helps the farmer for minimum time to grow the mushroom fruit body and reduce the lignocellulosic waste materials from the environmental pollution along with increasing the flavour in the fruitbody compared with commonly produced mushroom substrate (T6). Therefore, more research should be conducted to assess the consequences of combining different substrates and decreasing the lignocellulosic biomass by converting a protein-rich edible product through the oyster mushroom.


Subject(s)
Oryza , Pleurotus , Saccharum , Cellulose/metabolism , Edible Grain
5.
Water Sci Technol ; 84(10-11): 2718-2736, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34850689

ABSTRACT

East Kolkata Wetlands (EKW) is designated as International Ramsar site and are the hotspot for large-scale wastewater aquaculture practices. However, the continued surveillance of physicochemical properties of water and application of an eco-friendly approach are essential to ensure safe aquaculture practices. In the present study, we assessed the seasonal variation in physicochemical parameters of water across EKW and investigated the role of nitrifying bacteria as probiotics. We statistically analyzed various physicochemical properties of water samples from EKW. Results of the statistical analysis indicated a significant variation in all the physicochemical parameters across the selected water bodies of EKW (p < 0.01). We isolated and enumerated Nitrosomonas sp. and Nitrobacter sp. and assessed their ability to degrade trichloroethylene (TCE). The role of Nitrosomonas sp. and Nitrobacter sp. were further investigated and established through a small-scale experiment. Two microbial isolates, NSW3 and NBW2, displayed superior TCE degradation ability at pH 5, and the application of these strains as probiotics were found to improve the quality of water and survival rate of fishes in the treated experimental tanks. Our findings suggest that the application of the above mixed bacterial cultures in aquaculture could be an effective and environment-friendly approach for safe and productive aquaculture operations.


Subject(s)
Water Quality , Wetlands , Bacteria , Biodegradation, Environmental , Nitrosomonas
6.
Sci Rep ; 10(1): 1822, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32020026

ABSTRACT

Several organisms, specifically microorganisms survive in a wide range of harsh environments including extreme temperature, pH, and salt concentration. We analyzed systematically a large number of protein sequences with their structures to understand their stability and to discriminate extremophilic proteins from their non-extremophilic orthologs. Our results highlighted that the strategy for the packing of the protein core was influenced by the environmental stresses through substitutive structural events through better ionic interaction. Statistical analysis showed that a significant difference in number and composition of amino acid exist among them. The negative correlation of pairwise sequence alignments and structural alignments indicated that most of the extremophile and non-extremophile proteins didn't contain any association for maintaining their functional stability. A significant numbers of salt bridges were noticed on the surface of the extremostable proteins. The Ramachandran plot data represented more occurrences of amino acids being present in helix and sheet regions of extremostable proteins. We also found that a significant number of small nonpolar amino acids and moderate number of charged amino acids like Arginine and Aspartic acid represented more nonplanar Omega angles in their peptide bond. Thus, extreme conditions may predispose amino acid composition including geometric variability for molecular adaptation of extremostable proteins against atmospheric variations and associated changes under natural selection pressure. The variation of amino acid composition and structural diversifications in proteins play a major role in evolutionary adaptation to mitigate climate change.


Subject(s)
Protein Stability , Amino Acid Sequence , Amino Acids/metabolism , Computer Simulation , Extremophiles/metabolism , Hydrophobic and Hydrophilic Interactions , Isoelectric Point , Protein Conformation , Sequence Alignment
7.
J Antibiot (Tokyo) ; 72(5): 282-290, 2019 05.
Article in English | MEDLINE | ID: mdl-30799437

ABSTRACT

Mycobacterium tuberculosis (MTB) is commonly resistant to various drugs. Multidrug-resistant tuberculosis (MDR-MTB) is mostly caused by mutation in drug-binding proteins and protein folding. The aim of the study was to identify the pattern of mutations in embC, inhA and rpoB proteins and investigate its interactions with available drug such as rifampicin, ethambutol and isoniazid, using a computer docking method. The evolution of drugs resistant mechanisms of MTB was analyzed using an in silico approach. The model proteins were considered to be in a protein-protein interaction network among the twenty transmembrane proteins. The changes in structural conformation may describe the significance of the proton pumps system. The docking analysis revealed that unlike isoniazid, both rifampicin and ethambutol, bound to the same residues in mutant and wild forms. Moreover, multiple-sequence alignment (MSA) showed mutational hotspot regions where the substitution of amino acids in these three target proteins was position specific under stress. The molecular basis of drug resistance in M. tuberculosis can be represented by a protein network which is a well-regulated system for efflux pump activation by popularly used drugs. Ethambutol and rifampicin form stable complexes with EmbC and RpoB, respectively. Isoniazid shows no binding affinity to mutant InhA (2015). Analysis of the cellular network associated with drug regulatory proteins suggest that mmpl3, Rv1634 and Rv1258c play a major role by altering the protein pump to remove the active drug compounds from the bacterial cell.


Subject(s)
Antitubercular Agents/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Membrane Transport Proteins/metabolism , Mutant Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , Biological Transport, Active , Evolution, Molecular , Membrane Transport Proteins/genetics , Molecular Docking Simulation , Mutant Proteins/genetics , Mycobacterium tuberculosis/genetics , Protein Binding , Protein Interaction Maps , Tuberculosis, Multidrug-Resistant/microbiology
8.
J Trace Elem Med Biol ; 33: 54-67, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26653744

ABSTRACT

Oxidative stress a major cause of fluoride induced toxicity and mitochondrial impairment in common in experimental rats during chronic exposure of fluoride. Attempts have been made in the present experiment to diminish oxidative damage, combined therapy with (+)-catechin hydrate (an antioxidant) and sodium meta borate (chelator) were used. Fluoride intoxication in rats was performed by using 13mg/kg NaF and both antioxidant CH and chelator SMB were used at a concentration of 8.98µM/kg body weight. Mixture of CH and SMB in free or in PLGA nanocapsule encapsulated form were prepared. The efficacies of those formulations were tested in combating free radical mediated oxidative insult produced by sodium fluoride (NaF). The amalgamated therapy used in this experiment was shown to reduce fluoride levels in liver, brain and kidney from 9.5, 5.5, 6.3µg/g to 4.6, 2, 2.6µg/g, respectively. Our result indicated that the combined chelator and antioxidant therapy in nanocapsulated drug delivery system could provide a projection in combating fluoride induced mitochondrial impairment in rat model.


Subject(s)
Antioxidants/pharmacology , Borates/pharmacology , Catechin/pharmacology , Chelating Agents/pharmacology , Drug Delivery Systems , Nanocapsules/chemistry , Oxidative Stress/drug effects , Sodium Fluoride/toxicity , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Catechin/chemistry , Collagen/metabolism , Female , Glutathione/metabolism , Imaging, Three-Dimensional , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Membrane Potential, Mitochondrial/drug effects , Microscopy, Atomic Force , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Nanocapsules/ultrastructure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Viscosity
9.
Jundishapur J Microbiol ; 7(12): e11800, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25741425

ABSTRACT

BACKGROUND: Amylases play a vital role in biotechnological studies and rank an important position in the world enzyme market (25% to 33%). Bioprocess method of amylase production is more effective than the other sources, since the technique is easy, cost effective, fast, and the enzymes of required properties can be procured. OBJECTIVES: The current study aimed to report the characteristics of novel amylase producing bacterial strains isolated from Taptapani hot spring, Odisha, India. MATERIALS AND METHODS: Bacterial strains were isolated by dilution plating method from the water samples collected from Taptapani Hot Spring, Odisha and screened for amylase production through starch hydrolysis. The bacterial isolates were identified morphologically, biochemically, and finally by 16S rDNA profiling. RESULTS: Based on the morphological, physiological, biochemical characteristics and the molecular characterization, the isolates SS1, SS2, and SS3 were identified as Bacillus barbaricus, Aeromonas veroni, and Stenotrophomonas maltophilia, respectively. The approximate molecular weight of enzymes from SS1, SS2, and SS3 strains were 19 kDa, 56 kDa and 49 kDa, respectively. CONCLUSIONS: The current report isolates, characterizes, and demonstrates the novel heat-adapted amylase-producing bacteria SS1, SS2 and SS3 from Taptapani hot spring, indicating its potentiality and stability under acidic conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...