Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 11(11): 2165-2173, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214825

ABSTRACT

Ferroptosis is an iron-catalyzed, nonapoptotic form of regulated necrosis that has been implicated in the pathological cell death associated with various disorders including neurodegenerative diseases (e.g., Friedreich's ataxia (FRDA), Alzheimer's disease, and Parkinson's disease), stroke, and traumatic brain injury. Recently, we showed that lipophilic methylene blue (MB) and methylene violet (MV) analogues both promoted increased frataxin levels and mitochondrial biogenesis, in addition to their antioxidant activity in cultured FRDA cells. Presently, we report the synthesis of series of lipophilic phenothiazine analogues that potently inhibit ferroptosis. The most promising compounds (1b-5b) exhibited an improved protection compared to the parent phenothiazine against erastin- and RSL3-induced ferroptotic cell death. These analogues have equivalent or better potency than ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1), that are among the most potent inhibitors of this regulated cell death described so far. They represent novel lead compounds with therapeutic potential in relevant ferroptosis-driven disease models such as FRDA.

2.
Medchemcomm ; 9(9): 1491-1501, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30288223

ABSTRACT

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease that is linked to transcriptional repression of the nuclear FXN gene encoding the essential mitochondrial protein frataxin (FXN). Compounds that increase frataxin levels may enable effective therapeutic intervention for blunting disease progression. Recently, we showed that lipophilic methylene violet (MV) and methylene blue (MB) analogues both conferred benefit to cultured FRDA cells in several regards, including ROS suppression, maintenance of mitochondrial membrane potential and increased ATP production. Some of the MB analogues were also shown to promote increased frataxin levels and mitochondrial biogenesis. Presently, we report that two of the MV analogues studied previously (1 and 2) also increased frataxin levels and mitochondrial biogenesis significantly. Because the substitution pattern in the two series of compounds was not the same, we also prepared new MV derivatives having the same substitution pattern as the original MB derivatives studied to enable a more direct comparison. Two of the new MV compounds, 4b and 6b, exhibited enhanced antioxidant capability, increased frataxin levels and mitochondrial biogenesis, and improved aconitase activity. These encouraging findings demonstrated that the MV analogues had better overall activity with less cytotoxicity.

3.
Data Brief ; 20: 1105-1114, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30225325

ABSTRACT

As part of an ongoing program to develop potential therapeutic agents for the treatment of the neurodegenerative disease Friedreich׳s ataxia (FRDA), we have prepared a number of lipophilic methylene blue analogues. Some of these compounds significantly increase mitochondrial biogenesis and frataxin levels in cultured Friedreich's ataxia cells [1]. This data article describes the chemical synthesis and full physicochemical characterization of the new analogues.

4.
Bioorg Med Chem ; 26(12): 3359-3369, 2018 07 23.
Article in English | MEDLINE | ID: mdl-29773347

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder resulting from reduced expression of the protein frataxin (FXN). Although its function is not fully understood, frataxin appears to help assemble iron sulfur clusters; these are critical for the function of many proteins, including those needed for mitochondrial energy production. Finding ways to increase FXN levels has been a major therapeutic strategy for this disease. Previously, we described a novel series of methylene violet analogues and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Presently, a series of methylene blue analogues has been synthesized and characterized for their in vitro biochemical and biological properties in cultured Friedreich's ataxia lymphocytes. Favorable methylene blue analogues were shown to increase frataxin levels and mitochondrial biogenesis, and to improve aconitase activity. The analogues were found to be good ROS scavengers, and able to protect cultured FRDA lymphocytes from oxidative stress resulting from inhibition of complex I and from glutathione depletion. The analogues also preserved mitochondrial membrane potential and augmented ATP production. Our results suggest that analogue 5, emerging from the initial structure of the parent compound methylene blue (MB), represents a promising lead structure and lacks the cytotoxicity associated with the parent compound MB.


Subject(s)
Iron-Binding Proteins/metabolism , Methylene Blue/analogs & derivatives , Mitochondria/drug effects , Adenosine Triphosphate/metabolism , Cell Line , Cell Survival/drug effects , Electron Transport Complex I/metabolism , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Glutathione/metabolism , Humans , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/metabolism , Membrane Potential, Mitochondrial/drug effects , Methylene Blue/pharmacology , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Frataxin
5.
Bioorg Med Chem ; 25(20): 5537-5547, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28927904

ABSTRACT

In an effort to identify methylene blue analogues having improved antioxidant activity, a series of new methylene violet analogues have been designed and synthesized. The analogues were prepared following a synthetic route that is more efficient than the previously reported methods, both in terms of yield and purity of the final products. The route involves the Smiles rearrangement as one of the crucial steps. Smiles rearrangement of suitably substituted diphenyl sulfide intermediates afforded the corresponding phenothiazine analogues in high yields, which were subsequently converted to the final products. The methylene violet analogues were evaluated for their ability to preserve mitochondrial function in Friedreich's ataxia (FRDA) lymphocytes. The analogues were shown to be efficient ROS scavengers, and able to protect cultured FRDA lymphocytes from oxidative stress resulting from inhibition of complex I. The analogues also preserved mitochondrial membrane potential and augmented ATP production. The analogues were found to be better antioxidants than the parent compounds methylene blue and methylene violet.


Subject(s)
Mitochondria/drug effects , Phenothiazines/pharmacology , Adenosine Triphosphate/biosynthesis , Cells, Cultured , Humans , Hydrophobic and Hydrophilic Interactions , Lymphocytes/drug effects , Lymphocytes/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Phenothiazines/chemical synthesis , Phenothiazines/chemistry , Reactive Oxygen Species/metabolism
6.
Bioorg Med Chem ; 25(5): 1703-1716, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28189395

ABSTRACT

Recently, we described the optimization of novel pyrimidinol-based antioxidants as potential therapeutic molecules for targeting mitochondrial diseases. That study focused on improving the potency and metabolic stability of pyrimidinol antioxidants. This led us to consider the possibility of altering the positions of the exocyclic alkoxy and alkylamino substituents on the pyrimidinol scaffold. Twelve new analogues were prepared and their biological activities were investigated. The metabolic stability of the prepared regioisomers was also assessed in vitro using bovine liver microsomes. Unexpectedly, the 2-alkoxy-4-alkylamino substituted pyrimidinol antioxidants were found to have properties in protecting mitochondrial function superior to the isomeric 4-alkoxy-2-alkylamino substituted pyrimidinols evaluated in all earlier studies. This observation suggests a possible mode of action involving the intermediacy of an ortho-iminoquinone, a species not previously associated with mitochondrial respiratory chain function.


Subject(s)
Antioxidants/pharmacology , Cytoprotection/drug effects , Pyrimidines/pharmacology , Adenosine Triphosphate/metabolism , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Cattle , Mass Spectrometry , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Proton Magnetic Resonance Spectroscopy
7.
J Phys Chem A ; 115(5): 868-79, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21204533

ABSTRACT

Structures, energetics, and vibrational spectra are investigated for small pure (TiO(2))(n), (SiO(2))(n), and mixed Ti(m)Si(n-m)O(2n) [n = 2-5, m = 1 to (n - 1)] oxide clusters by density functional theory (DFT). The BP86/ATZP level of theory is employed to obtain constitutional isomers of the oxide clusters. In accordance with previous studies, our calculations show three-dimensional compact structures are preferred for pure (TiO(2))(n) with oxo-stabilized higher hexavalent states, and linear chain structures are favored for pure (SiO(2))(n) with tetravalent states. However, the herein theoretically first reported mixed Ti(m)Si(n-m)O(2n) oxide clusters prefer either three-dimensional compact or linear chain structures depending upon the stoichiometry of the compound. Vibrational analysis of the important modes of some highly stable structures is provided. Coupled-cluster single and double excitation (with triples) [CCSD(T)] computed energy gaps for the TiO(2) dimers compare well with results from previous study. Excitation energies are computed by use of time-dependent (TD) DFT and equation-of-motion coupled-cluster calculations with singles and doubles (EOM-CCSD) for the most stable isomers.

8.
Chemphyschem ; 10(14): 2535-40, 2009 Oct 05.
Article in English | MEDLINE | ID: mdl-19728342

ABSTRACT

The structures associated with halide (F-, Cl-, Br-) complexation inside CH hydrogen-bonding macrocyclic receptors, called triazolophanes, are characterized using density functional theory (DFT). The associated binding energies in the gas and solution phases are evaluated. The ruffles in the empty triazolophane become smoothed-out upon Cl(-)- and Br(-)-ion binding directly into the middle of the cavity. The largely pre-organized cavity morphs into an elliptical shape to facilitate shorter hydrogen bonds in the north and south regions and longer ones west and east. The smaller F- ion sits in, and flattens-out, only the north (or south) region. The 1,2,3-triazoles show shorter CH...Cl- contacts than for the phenylenes. Both Cl- and Br- show the same binding geometries but Cl- has a larger binding energy consistent with its stronger Lewis basicity. Model triads were used to decompose the overall binding energy into those of its components. In the course of this triad analysis, anion polarization was identified and its contribution to the triad...Cl- binding energy estimated. Consequently, the binding energies for the individual aryl units within the comparatively non-polarized triazolophanes were estimated. The 1,2,3-triazoles are twice as strong as the phenylenes thus contributing most of the interaction energy to Cl(-)-ion binding. Therefore, the 1,2,3-triazoles appear to approach the hydrogen bond strengths of the NH donors of pyrrole units.

9.
J Phys Chem A ; 110(10): 3655-61, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16526648

ABSTRACT

We have performed DFT computational studies [B3LYP, 6-31+G] to obtain metal ion coordination isomers of VX-Me [MeP(O)(OMe)(SCH2CH2NMe2)], a model of two of the most lethal nerve agents: VX [MeP(O)(OEt)(SCH2CH2N(iPr)2)] and Russian-VX [MeP(O)(OCH2CHMe2)(SCH2CH2N(Et)2)]. Our calculations involved geometry optimizations of the neutral VX-Me model as well as complexes with H+, Li+, Na+, K+, Be2+, Mg2+, and Ca2+ that yielded 2-8 different stable chelation modes for each ion that involved mainly mono- and bidentate binding. Importantly, our studies revealed that the [O(P),N] bidentate binding mode, long thought to be the active mode in differentiating the hydrolytic path of VX from other nerve agents, was the most stable for all ions studied here. Binding energy depended mainly on ionic size as well as charge, with binding energies ranging from 364 kcal mol(-1) for Be2+ to 33 kcal mol(-1) for K+. Furthermore, calculated NMR shifts for VX-Me correlate to experimental values of VX.

10.
J Phys Chem A ; 109(8): 1720-8, 2005 Mar 03.
Article in English | MEDLINE | ID: mdl-16833497

ABSTRACT

The nature of interactions of phenol with various molecules (Y = HF, HCl, H2O, H2S, NH3, PH3, MeOH, MeSH) is investigated using ab initio calculations. The optimized geometrical parameters and spectra for the global energy minima of the complexes match the available experimental data. The contribution of attractive (electrostatic, inductive, dispersive) and repulsive (exchange) components to the binding energy is analyzed. HF favors sigma O-type H-bonding, while H2O, NH3, and MeOH favor sigma H-type H-bonding, where sigma O-/sigma H-type is the case when a H-bond forms between the phenolic O/H atom and its interacting molecule. On the other hand, HCl, H2S, and PH3 favor pi-type H-bonding, which are slightly favored over sigma O-, sigma H-, sigma H-type bonding, respectively. MeSH favors chi H-type bonding, which has characteristics of both pi and sigma H. The origin of these conformational preferences depending on the type of molecules is elucidated. Finally, phenol-Y complexes are compared with water-Y complexes. In the water-Y complexes where sigma O/sigma H-type involves the H-bond by the water O/H atom, HF and HCl favor sigma O-type, H2O involves both sigma O-/sigma H-type, and H2S, NH3, PH3, MeOH, and MeSH favor sigma H-type bonding. Except for HF, seven other species have larger binding energies with a phenol molecule than a water molecule.

11.
J Org Chem ; 68(17): 6571-5, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-12919017

ABSTRACT

The highly stereospecific and regiospecific recognition of alpha-amino acids exhibited by a novel Co(III) metal complex embodied in the experimental work (Nature 1999, 401, 254) is rationalized from the energetics and structural characteristics with the use of density functional calculations. The steric repulsion between the chiral center of the receptor [Co(III) complex] and alanine has been a cause for the discrimination of complex stabilities. The energies evaluated for all possible alanine binding modes clearly reveal regiospecificity. Our main emphasis is laid on the base-catalyzed epimerization reaction that drives the stereospecific recognition to near completion. The conducted tour mechanism is found to be the most likely candidate. A similar role by the equivalent Zn(II) complex is found.


Subject(s)
Amino Acids/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...