Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(10): 11181-11193, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38497000

ABSTRACT

The present study deals with two-phase non-Newtonian pseudoplastic crude oil and water flow inside horizontal pipes simulated by ANSYS. The study helps predict velocity and velocity profiles, as well as pressure drop during two-phase crude-oil-water flow, without complex calculations. Computational fluid dynamics (CFD) analysis will be very important in reducing the experimental cost and the effort of data acquisition. Three independent horizontal stainless steel pipes (SS-304) with inner diameters of 1 in., 1.5 in., and 2 in. were used to circulate crude oil with 5, 10, and 15% v/v water for simulation purposes. The entire length of the pipes, along with their surfaces, were insulated to reduce heat loss. A grid size of 221,365 was selected as the optimal grid. Two-phase flow phenomena, pressure drop calculations, shear stress on the walls, along with the rate of shear strain, and phase analysis were studied. Moreover, velocity changes from the wall to the center, causing a velocity gradient and shear strain rate, but at the center, no velocity variation (velocity gradient) was observed between the layers of the fluid. The precision of the simulation was investigated using three error parameters, such as mean square error, Nash-Sutcliffe efficiency, and RMSE-standard deviation of observation ratio. From the simulation, it was found that CFD analysis holds good agreement with experimental results. The uncertainty analysis demonstrated that our CFD model is helpful in predicting the rheological parameters very accurately. The study aids in identifying and predicting fluid flow phenomena inside horizontal straight pipes in a very effective way.

2.
Food Res Int ; 176: 113841, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163732

ABSTRACT

Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.


Subject(s)
Chlorophyceae , Microalgae , Microalgae/metabolism , Xanthophylls/metabolism
3.
Carbohydr Polym ; 328: 121686, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220318

ABSTRACT

Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.


Subject(s)
Biological Products , Cyanobacteria , Cyanobacteria/metabolism , Biotechnology , Biopolymers/chemistry , Biological Products/metabolism , Polysaccharides, Bacterial
4.
Int J Pharm ; 640: 123018, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37149113

ABSTRACT

Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Drug Delivery Systems
5.
Appl Biochem Biotechnol ; 195(12): 7236-7254, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36988846

ABSTRACT

Prodigiosin (PG) is chemically formulated as 4-methoxy-5-[(5-methyl-4-pentyl-2H-pyrrol-2ylidene)methyl]-2,2'-bi-1H-pyrrole and it is an apoptotic agent. Only a few protein targets for PG have been identified so far for regulating various diseases; nevertheless, finding more PG targets is crucial for novel drug discovery research. A bioinformatics method was applied in this work to find additional potential PG targets. Initially, a text mining analysis was conducted to determine the relationship between PG and a variety of metabolic processes. One hundred sixteen proteins from the KEGG pathway were selected for the docking study. Inverse virtual screening was performed by Discovery Studio software 4.1 using CHARMm-based docking tool. Twelve proteins are screened out of 116 because their CDOCKER interaction energy is larger than - 40.22 kcal/mol. The best docking score with PG was reported to be - 44.25 kcal/mol, - 44.99 kcal/mol, and - 40.91 kcal/mol for three novel proteins, such as human epidermal growth factor-2 (HER-2), mitogen-activated protein kinase (MEK), and S6 kinase protein (S6K) respectively. The interactions in the S6K/PG complex are predominantly hydrophobic; however, hydrogen bond interactions can be identified in the MEK/PG and HER-2/PG complexes. The root-mean-square deviation (RMSD) and key interaction score system (KISS) were further used to validate the docking approach. The docking approach employed in this work has a low RMSD value (2.44 Å) and a high KISS score (0.5), indicating that it is significant.


Subject(s)
Neoplasms , Prodigiosin , Humans , Molecular Docking Simulation , Early Detection of Cancer , Protein Binding , Epidermal Growth Factor , Mitogen-Activated Protein Kinase Kinases , Molecular Dynamics Simulation
6.
Appl Biochem Biotechnol ; 194(11): 5403-5418, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35779175

ABSTRACT

Prodigiosin is natural red colourant derived from Serratia marcescens. However, the high cost of prodigiosin restricts its use in food and pharmaceutical industries, which can be addressed with the design of a suitable extraction procedure. Therefore, the present study aims to use Taguchi methodology to optimize various process parameters during ultrasound-assisted extraction (UAE) to get a higher prodigiosin extraction yield. The most significant contribution comes from the solid-to-liquid ratio (36.66%), followed by sonication of duty cycle (34.82%), medium pH (15.7%), and acoustic intensity (12.82%). The Taguchi technique predicts the highest optimal yield using the solid-liquid ratio (0.3 g/mL), duty cycle sonication (75%), acoustic intensity (12.5 w/cm2), and medium pH (3) as parameters. When the extraction conditions were optimized, the yield of prodigiosin increased by 4166.89 mg/L. In the future, the above extraction conditions determined using Taguchi approach will be applied for large-scale extraction of prodigiosin. Finally, a second-order kinetic model is used to suit the batch extraction investigation and the second-order rate constant (k) has a value of 4 × 10-5 L/mg/min. In the future, the rate constant, which is reported for the first time, will be used to create a batch extractor for commercial extraction of prodigiosin. Prodigiosin has also been shown to have substantial antioxidant and scavenging properties, which increase in a dose-dependent way with prodigiosin concentration. Because of its antioxidant and scavenging properties, prodigiosin can be used as food additives or pharmaceutical ingredients in industries.


Subject(s)
Antioxidants , Prodigiosin , Kinetics , Serratia marcescens , Food Additives , Pharmaceutical Preparations
7.
Recent Pat Biotechnol ; 13(1): 74-86, 2019.
Article in English | MEDLINE | ID: mdl-30124162

ABSTRACT

BACKGROUND: The non-Newtonian pseudoplastic liquid flow through different types of the bend is more complicated compared to the simple straight pipe as the bends are associated with various curve geometry. Bends have wide application in bioengineering, biotechnology and biomedical such as study biofluids, blood rheology study, the design of medical equipment like equipment measuring the cholesterol etc. Method: The papers deal with the estimation of loss coefficient and frictional pressure drop of Newtonian and non-Newtonian pseudoplastic fluid flow through the different bend of 0.0127 m diameter pipe geometry using commercially available CFD software fluent 6.3. We revised all patents relating to the pipe flow through different types of bend. The present study also deals with the efficient application of Genetic Algorithm (GA) for optimization of frictional pressure drop. Laminar Non-Newtonian Power law model is used for Sodium Carboxy Methyl Cellulose (SCMC) solution to solve the continuity and the momentum equations numerically. Generalized input-output correlation has been developed by Gene Expression Programming (GEP) using Matlab. RESULTS: The above-mentioned algorithm is used to predict and optimize the pressure drop. It has been found that, the process exhibit the minimum pressure drop across the bend under optimum condition (Angle = 133.160, Concentration = 0.2 Kg/m3 and velocity = 0.53 m/s). The effect of flow rate, bend angle, fluid behaviour on static pressure and pressure drop has also been investigated. CONCLUSION: From the study, it can be concluded that the developed GA model has a good agreement with the CFD model. The software predicted data might be used to solve various industrial problems and also to design different equipment.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Hydrodynamics , Patents as Topic , Humans , Pressure , Software
8.
Recent Pat Biotechnol ; 13(1): 33-44, 2019.
Article in English | MEDLINE | ID: mdl-30318009

ABSTRACT

BACKGROUND: L-ASNase (L-asparagine aminohydrolase EC 3.5.1.1) is used for the conversion of L-asparagine to L-aspartic acid and ammonia and also it was found as an agent of chemotherapeutic property according to recent patents. It is known as an anti-cancer agent and recently it has received an immense attention. Various microorganisms have the ability to secrete the L-ASNase. It is famous world-wide as anti-tumor medicine for acute lymphoblastic leukemia and lymphosarcoma. L-ASNase helps in deamination of Asparagine and Glutamine. SOURCE: L-ASNase mainly found in two bacterial sources; Escherichia coli and Erwinia carotovora. Isolation from plants: Endophytes were also a great source of L-ASNase. It was isolated from four types of plants named as; C. citratus, O. diffusa, M. koengii, and also P. bleo. APPLICATIONS: L-ASNase is used as a potential anti-tumor medicine. It plays a very much essential role for the growth of tumor cells. Tumor cells require a lot of asparagine for their growth. But ASNase converts to aspartate and ammonia from asparagine. So the tumor cell does not proliferate and fails to survive. The L-ASNase is used as the medicine for the major type of cancer like acute lymphocytic leukemia (ALL), brain. It also used as a medicine for central nervous system (CNS) tumors, and also for neuroblastoma. Two types of L-ASNase have been found. CONCLUSION: L-ASNase becomes a powerful anti-tumor medicine and researchers should develop a potent strain of asparaginase which can produce asparaginase in the industrial level. It is also used in the pharmaceutical industry and food industry on a broader scale.


Subject(s)
Antineoplastic Agents/chemistry , Asparaginase/chemistry , Asparaginase/isolation & purification , Patents as Topic , Antineoplastic Agents/therapeutic use , Asparaginase/genetics , Asparagine/chemistry , Escherichia coli/enzymology , Glutamine/chemistry , Humans , Neuroblastoma/drug therapy , Pectobacterium carotovorum/enzymology
9.
Recent Pat Biotechnol ; 13(1): 57-68, 2019.
Article in English | MEDLINE | ID: mdl-30246646

ABSTRACT

BACKGROUND: Membrane filtration process produced good quality of permeate flux due to which it is used in different industries like dairy, pharmaceutical, sugar, starch and sweetener industry, bioseparation, purification of biomedical materials, and downstream polishing etc. The cross-flow mode of operation has also been used to improve the quality of the Rubber Industrial effluent of Tripura, India. METHOD: The Computational Fluid Dynamics (CFD) simulation of the cross-flow membrane is done by using ANSYS Fluent 6.3. The meshing of the geometry of the membrane is done by Gambit 2.4.6 and a grid size of 100674, the number of faces is 151651 and number of nodes being 50978 has been selected for the simulation purpose from the grid independence test. We have revised and included all patents in the manuscripts related to the membrane filtration unit. RESULTS: Single phase Pressure-Velocity coupled Simple Algorithm and laminar model is used for the simulation of the developed model and Fluent 6.3 used for the prediction of pressure, pressure drop, flow phenomena, wall shear stress and shear strain rate inside the module is studied for cross flow membrane. CONCLUSION: From the study, it has been found that CFD simulated results hold good agreement with the experimental values.


Subject(s)
Hydrodynamics , Membranes, Artificial , Wastewater/chemistry , Algorithms , Computer Simulation , Humans , India , Patents as Topic , Rubber/toxicity
10.
3 Biotech ; 8(8): 337, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30073122

ABSTRACT

Improved xylanase production was carried out through optimization of environmental stresses during spore preservation, seed cultivation and batch fermentation and identifies the markers at various stages. The maximum spore size (radius 6.5 µm) of Aspergillus niger was noticed after 28 days of spore preservation. During seed cultivation, the hypha formed alongside of germination tube (length 196.8 µm) was noticed only at pH-7 after 18 h of incubation at 28 °C. Therefore, pH-7 and 28 °C were considered as optimum during seed cultivation. In this stage, the final pH of the medium was found to be 6.2 which can be used as marker for completion of seed culture. The production media was optimized through Taguchi methodology. The maximum xylanase production was found to be 1575.93 U. The optimum concentration for media components was found to be xylan from beechwood of 3 g/l, potassium nitrate of 10 g/l, magnesium sulphate of 5 g/l, di-potassium hydrogen phosphate of 50 mM, calcium carbonate of 2 g/l, 1000× of trace element (1 ml) and sodium chloride of 5 g/l. It is evident that improved production of xylanase can be possible through optimization of environmental stresses during spore preservation, seed cultivation and batch fermentation and can be intensified through identification of markers at various stages of fermentation process.

11.
Carbohydr Polym ; 179: 228-243, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29111047

ABSTRACT

Cyanobacteria are uniquely suited for the development of sustainable bioproduction platforms but are currently underutilized due to lack of genetic tools. Exopolysaccharide (EPS) is of significant biotechnological importance due to their technological application in various industries. It has been found that most of the research works are focused on isolation and characterization of new exopolysaccharides from microbial sources. The exopolysaccharides from cyanobacteria have been poorly explored despite their original structural features associated with specific biological and physicochemical properties. However, it could increase in a near future through the use of inexpensive cyanobacterial platform as well as available information on the structural data and specific properties of these biopolymers. This review covers genetic regulation for production of exopolysaccharide, analytical strategies for their characterization, evaluation of structure property relationship and design of extraction protocol from cyanobacterial biomass. In addition applications of exopolysaccharide for removal of heavy metal from wastewater are critically reviewed.


Subject(s)
Cyanobacteria/genetics , Gene Expression Regulation, Bacterial , Metals, Heavy/analysis , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/chemistry , Biotechnology , Chemistry Techniques, Analytical , Metals, Heavy/chemistry , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/isolation & purification , Structure-Activity Relationship , Wastewater/analysis , Wastewater/chemistry
12.
Int J Biol Macromol ; 105(Pt 1): 401-409, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28711616

ABSTRACT

In the present work, a potent xylanase producing fungal strain Aspergillus niger (KP874102.1) was isolated through cultural and morphological observations from soil sample of Baramura forest, Tripura west, India. 28S rDNA technique was applied for genomic identification of this fungal strain. The isolated strain was found to be phylogenetically closely related to Aspergillus niger. Kinetic constants such as Km and Vmax for extracellular xylanase were determined using various substrate such as beech wood xylan, oat spelt xylan and CM cellulose through Lineweaver-Burk plot. Km, Vmax and Kcat for beech wood xylan are found to be 2.89mg/ml, 2442U and 426178Umlmg-1 respectively. Crude enzyme did not show also CM cellulose activity. The relative efficiency of oat spelt xylan was found to be 0.819 with respect to beech wood xylan. After acid hydrolysis, enzyme was able to produce reducing sugar with 17.7, 35.5, 50.8 and 65% (w/w) from orange peel after 15, 30, 45 and 60min incubation with cellulase free xylanase and maximum reducing sugar formation rate was found to be 55.96µg/ml/min. Therefore, the Aspergillus niger (KP874102.1) is considered as a potential candidate for enzymatic hydrolysis of orange peel.


Subject(s)
Aspergillus niger/cytology , Aspergillus niger/enzymology , Citrus sinensis/chemistry , Endo-1,4-beta Xylanases/isolation & purification , Endo-1,4-beta Xylanases/metabolism , Extracellular Space/enzymology , Hydrolysis , Industrial Waste , Kinetics , Substrate Specificity , Xylans/metabolism
13.
Bioengineered ; 8(5): 471-487, 2017 Sep 03.
Article in English | MEDLINE | ID: mdl-28453385

ABSTRACT

There is an urgent need to find an environment friendly and sustainable technology for alternative energy due to rapid depletion of fossil fuel and industrialization. Microbial Fuel Cells (MFCs) have operational and functional advantages over the current technologies for energy generation from organic matter as it directly converts electricity from substrate at ambient temperature. However, MFCs are still unsuitable for high energy demands due to practical limitations. The overall performance of an MFC depends on microorganism, appropriate electrode materials, suitable MFC designs, and optimizing process parameters which would accelerate commercialization of this technology in near future. In this review, we put forth the recent developments on microorganism and electrode material that are critical for the generation of bioelectricity generation. This would give a comprehensive insight into the characteristics, options, modifications, and evaluations of these parameters and their effects on process development of MFCs.


Subject(s)
Bacterial Physiological Phenomena , Bioelectric Energy Sources/microbiology , Electrodes/microbiology , Genetic Enhancement/methods , Bacterial Adhesion/physiology , Bacterial Proteins/genetics , Electric Impedance , Energy Transfer/physiology , Equipment Design , Equipment Failure Analysis , Protein Engineering/methods
14.
Bioengineered ; 8(2): 137-146, 2017 Mar 04.
Article in English | MEDLINE | ID: mdl-27780405

ABSTRACT

The physiological and morphological changes were extensively studied during fed batch fermentation using newly isolated Aspergillus niger (KP874102.1). Significantly higher xylanase production was possible through optimization of environmental stresses by fed batch process. The fed batch fermentation was carried out for improved xylanase production (2524 U) where initial xylan was kept 1.5 g/L in the production medium. However, 3 g/L of xylan with 50 mM K2HPO4 having pH-7 was consecutively fed at 72 and 120 h of fermentation. K2HPO4 showed significant role both the morphology of the microorganism and produces enzymes in fed batch fermentation. During feeding phase, the pH was found in the range of 6.5 to 7 which was used as marker for the fed batch process. The crude enzyme was used for the bio-bleaching of banana pulp.


Subject(s)
Aspergillus niger/enzymology , Biotechnology/methods , Bleaching Agents/metabolism , Cellulase/metabolism , Endo-1,4-beta Xylanases/metabolism , Fermentation
15.
Bioengineered ; 7(6): 424-431, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27435915

ABSTRACT

The present investigation is mainly concerned with the rapid development of extracellular xylanase assay conditions by using Taguchi methodology. The extracellular xylanase was produced from Aspergillus niger (KP874102.1), a new strain isolated from a soil sample of the Baramura forest, Tripura West, India. Four physical parameters including temperature, pH, buffer concentration and incubation time were considered as key factors for xylanase activity and were optimized using Taguchi robust design methodology for enhanced xylanase activity. The main effect, interaction effects and optimal levels of the process factors were determined using signal-to-noise (S/N) ratio. The Taguchi method recommends the use of S/N ratio to measure quality characteristics. Based on analysis of the S/N ratio, optimal levels of the process factors were determined. Analysis of variance (ANOVA) was performed to evaluate statistically significant process factors. ANOVA results showed that temperature contributed the maximum impact (62.58%) on xylanase activity, followed by pH (22.69%), buffer concentration (9.55%) and incubation time (5.16%). Predicted results showed that enhanced xylanase activity (81.47%) can be achieved with pH 2, temperature 50°C, buffer concentration 50 Mm and incubation time 10 min.


Subject(s)
Aspergillus niger/enzymology , Endo-1,4-beta Xylanases/biosynthesis , Biological Assay , Endo-1,4-beta Xylanases/metabolism , Hydrogen-Ion Concentration , Models, Theoretical , Reproducibility of Results , Temperature
16.
Int J Biol Macromol ; 82: 1041-54, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529189

ABSTRACT

Xylanases are classified under glycoside hydrolase families which represent one of the largest groups of commercial enzymes. Depolymerizing xylan molecules into monomeric pentose units involves the synergistic action of mainly two key enzymes which are endo-ß-xylanase and ß-xylosidase. Xylanases are different with respect to their mode of action, substrate specificities, biochemical properties, 3D structure and are widely produced by a spectrum of bacteria and fungi. Currently, large scale production of xylanase can be produced through the application of genetic engineering tool which allow fast identification of novel xylanase genes and their genetic variations makes it an ideal enzymes. Due to depletion of fossil fuel, there is urgent need to find out environment friendly and sustainable energy sources. Therefore, utilisation of cheap lignocellulosic materials along with proper optimisation of process is most important for cost efficient ethanol production. Among, various types of lignocellulosic substances, water hyacinth, a noxious aquatic weed, has been found in many tropical. Therefore, the technological development for biofuel production from water hyacinth is becoming commercially worthwhile. In this review, the classification and mode of action of xylanase including genetic regulation and strategy for robust xylanase production have been critically discussed from recent reports. In addition various strategies for cost effective biofuel production from water hyacinth including chimeric proteins design has also been critically evaluated.


Subject(s)
Biofuels , Eichhornia/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/classification , Cost-Benefit Analysis , Endo-1,4-beta Xylanases/genetics , Ethanol/metabolism , Fermentation , Gene Expression Regulation , Genetic Engineering , Renewable Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...