Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(9): e0283448, 2023.
Article in English | MEDLINE | ID: mdl-37773921

ABSTRACT

Post translational modifications (PTMs) are exploited by various pathogens in order to escape host immune responses. SUMOylation is one of the PTMs which is involved in regulation of a variety of cellular responses. However, the effects of host SUMOylation on pathogenic bacteria largely remain elusive. We, therefore, investigated the role of SUMOylation in regulating defense responses in dendritic cells (DCs) during mycobacterial infection. Dendritic Cells of female BALB/c mice and THP-1 macrophages were used. Western blotting was performed to measure the expression of level of SUMO1, pSTAT1, pp38, pERK, Beclin-1, LC3, Bax and Cytochrome C. For bacterial burden confocal microscopy and CFU (Colony Forming Unit) were used. Flow cytometry was used for ROS and co-stimulatory molecules measurement. Cytokine level were measured using ELISA. We show that stimulation of Bone Marrow Derived Dendritic Cells (BMDCs) with mycobacterial antigen Rv3416 or live infection with Mycobacterium bovis BCG increases the SUMOylation of host proteins. Inhibition of SUMOylation significantly decreased intracellular bacterial loads in DCs. Additionally, inhibiting SUMOylation, induces protective immune responses by increasing oxidative burst, pro-inflammatory cytokine expression and surface expression of T cell co-stimulatory molecules, and activation of pSTAT1 and Mitogen Activated Protein Kinases (MAPK) proteins- pp38 and pERK. SUMOylation inhibition also increased apoptosis and autophagy in BMDCs. Intriguingly, mycobacteria increased SUMOylation of many of the above molecules. Furthermore, inhibiting SUMOylation in DCs primed T cells that in turn attenuated bacterial burden in infected macrophages. These findings demonstrate that SUMOylation pathway is exploited by mycobacteria to thwart protective host immune responses.


Subject(s)
Mycobacterium Infections , Mycobacterium bovis , Animals , Mice , Female , Sumoylation , Cytokines/metabolism , Dendritic Cells
2.
Biomol Concepts ; 12(1): 94-109, 2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34304400

ABSTRACT

We previously reported that M. tb on its own as well as together with HIV inhibits macrophage apoptosis by upregulating the expression of Bcl2 and Inhibitor of Apoptosis (IAP). In addition, recent reports from our lab showed that stimulation of either macrophages or BMDCs results in the significant upregulation of Bcl2. In this report, we delineate the role of Bcl2 in mediating defense responses from dendritic cells (BMDCs) during mycobacterial infection. Inhibiting Bcl2 led to a significant decrease in intracellular bacterial burden in BMDCs. To further characterize the role of Bcl2 in modulating defense responses, we inhibited Bcl2 in BMDCs as well as human PBMCs to monitor their activation and functional status in response to mycobacterial infection and stimulation with M. tb antigen Rv3416. Inhibiting Bcl2 generated protective responses including increased expression of co-stimulatory molecules, oxidative burst, pro-inflammatory cytokine expression and autophagy. Finally, co-culturing human PBMCs and BMDCs with antigen-primed T cells increased their proliferation, activation and effector function. These results point towards a critical role for Bcl2 in regulating BMDCs defense responses to mycobacterial infection.


Subject(s)
Dendritic Cells/immunology , Immunity , Macrophages/immunology , Mycobacterium Infections/immunology , Mycobacterium bovis/immunology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Apoptosis , Autophagy , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Dendritic Cells/pathology , Female , Humans , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mycobacterium Infections/metabolism , Mycobacterium Infections/microbiology , Mycobacterium Infections/pathology , Proto-Oncogene Proteins c-bcl-2/genetics
3.
J Leukoc Biol ; 102(5): 1249-1259, 2017 11.
Article in English | MEDLINE | ID: mdl-28877954

ABSTRACT

Microorganisms are known to devise various strategies to thwart protective responses by the host. One such strategy is to incorporate sequences and domains in their genes/proteins that have similarity to various domains of the host proteins. In this study, we report that Mycobacterium tuberculosis protein Rv3529c exhibits significant similarity to the death domain of the TLR pathway adaptor protein MyD88. Incubation of macrophages with Rv3529c specifically inhibited TLR2-mediated proinflammatory responses. This included attenuated oxidative burst, reduced phosphorylation of MAPK-ERK, reduced activation of transcription factor NF-κB and reduced secretion of proinflammatory cytokines IFN-γ, IL-6, and IL-17A with a concomitant increased secretion of suppressor cytokines IL-10 and TGF-ß. Importantly, Rv3529c significantly inhibited TLR2-induced association of MyD88 with IRAK1 by competitively binding with IRAK1. Further, Rv3529c mediated inhibition of apoptosis and phagosome-lysosome fusion. Lastly, incubation of macrophages with Rv3529c increased bacterial burden inside macrophages. The data presented show another strategy evolved by M. tuberculosis toward immune evasion that centers on incorporating sequences in proteins that are similar to crucial proteins in the innate immune system of the host.


Subject(s)
Bacterial Proteins/pharmacology , Immune Evasion , Macrophages/microbiology , Mycobacterium tuberculosis/immunology , Toll-Like Receptor 2/immunology , Animals , Bacterial Load , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Gene Expression Regulation , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lysosomes/drug effects , Lysosomes/immunology , Macrophages/drug effects , Macrophages/immunology , Membrane Fusion/drug effects , Membrane Fusion/immunology , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/immunology , Molecular Mimicry , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/pathogenicity , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Phagosomes/drug effects , Phagosomes/immunology , Primary Cell Culture , Protein Domains , Respiratory Burst/immunology , Signal Transduction , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 2/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...