Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 11: 1258753, 2023.
Article in English | MEDLINE | ID: mdl-38033821

ABSTRACT

Many preclinical studies have shown that birth-associated tissues, cells and their secreted factors, otherwise known as perinatal derivatives (PnD), possess various biological properties that make them suitable therapeutic candidates for the treatment of numerous pathological conditions. Nevertheless, in the field of PnD research, there is a lack of critical evaluation of the PnD standardization process: from preparation to in vitro testing, an issue that may ultimately delay clinical translation. In this paper, we present the PnD e-questionnaire developed to assess the current state of the art of methods used in the published literature for the procurement, isolation, culturing preservation and characterization of PnD in vitro. Furthermore, we also propose a consensus for the scientific community on the minimal criteria that should be reported to facilitate standardization, reproducibility and transparency of data in PnD research. Lastly, based on the data from the PnD e-questionnaire, we recommend to provide adequate information on the characterization of the PnD. The PnD e-questionnaire is now freely available to the scientific community in order to guide researchers on the minimal criteria that should be clearly reported in their manuscripts. This review is a collaborative effort from the COST SPRINT action (CA17116), which aims to guide future research to facilitate the translation of basic research findings on PnD into clinical practice.

2.
Soc Sci Humanit Open ; 8(1): 100579, 2023.
Article in English | MEDLINE | ID: mdl-37287633

ABSTRACT

Assessing students' online learning is a vital constituent of the effective teaching-learning process in a virtual mode. This study addressed teachers' preparedness, challenges and effective practices for students' assessment in online learning during the COVID-19 pandemic. Online assessment at times of uncertainty has become arduous for university teachers as it is not in practice in Indian higher educational institutions (HEIs). This research reports a study of the Adamas University, teachers drawn-out through semi-structured interviews of individual teachers. The researchers employed a case study research method to attain the objectives of the study using thematic analysis for the qualitative data. Thirty-one faculty members were selected as a sample of the study. The study findings indicated that the University teachers used multiple online assessment techniques, some common, some extremely unique, viz. blogs and peer tutorial videos. The preparedness or readiness varied considerably as some were instead sceptical, whereas some were amusingly non-challant. The study found that teachers faced many problems while assessing students' performance during online classes, which were not just tech-based, but also due to their distressed state of mind.

3.
Front Bioeng Biotechnol ; 10: 958669, 2022.
Article in English | MEDLINE | ID: mdl-36312547

ABSTRACT

Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.

4.
Pharmaceutics ; 13(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374729

ABSTRACT

Reactive oxygen species (ROS) have recently been recognized as important signal transducers, particularly regulating proliferation and differentiation of cells. Diphenyleneiodonium (DPI) is known as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) and is also affecting mitochondrial function. The aim of this study was to investigate the effect of DPI on ROS metabolism and mitochondrial function in human amniotic membrane mesenchymal stromal cells (hAMSCs), human bone marrow mesenchymal stromal cells (hBMSCs), hBMSCs induced into osteoblast-like cells, and osteosarcoma cell line MG-63. Our data suggested a combination of a membrane potential sensitive fluorescent dye, tetramethylrhodamine methyl ester (TMRM), and a ROS-sensitive dye, CM-H2DCFDA, combined with a pretreatment with mitochondria-targeted ROS scavenger MitoTEMPO as a good tool to examine effects of DPI. We observed critical differences in ROS metabolism between hAMSCs, hBMSCs, osteoblast-like cells, and MG-63 cells, which were linked to energy metabolism. In cell types using predominantly glycolysis as the energy source, such as hAMSCs, DPI predominantly interacted with NOX, and it was not toxic for the cells. In hBMSCs, the ROS turnover was influenced by NOX activity rather than by the mitochondria. In cells with aerobic metabolism, such as MG 63, the mitochondria became an additional target for DPI, and these cells were prone to the toxic effects of DPI. In summary, our data suggest that undifferentiated cells rather than differentiated parenchymal cells should be considered as potential targets for DPI.

5.
Front Bioeng Biotechnol ; 8: 613804, 2020.
Article in English | MEDLINE | ID: mdl-33520964

ABSTRACT

For more than 100 years, the human amniotic membrane (hAM) has been used in multiple tissue regeneration applications. The hAM consists of cells with stem cell characteristics and a rich layer of extracellular matrix. Undoubtedly, the hAM with viable cells has remarkable properties such as the differentiation potential into all three germ layers, immuno-modulatory, and anti-fibrotic properties. At first sight, the hAM seems to be one structural entity. However, by integrating its anatomical location, the hAM can be divided into placental, reflected, and umbilical amniotic membrane. Recent studies show that cells of these amniotic sub-regions differ considerably in their properties such as morphology, structure, and content/release of certain bioactive factors. The aim of this review is to summarize these findings and discuss the relevance of these different properties for tissue regeneration. In summary, reflected amnion seems to be more immuno-modulatory and could have a higher reprogramming efficiency, whereas placental amnion seems to be pro-inflammatory, pro-angiogenic, with higher proliferation and differentiation capacity (e.g., chondrogenic and osteogenic), and could be more suitable for certain graft constructions. Therefore, we suggest that the respective hAM sub-region should be selected in consideration of its desired outcome. This will help to optimize and fine-tune the clinical application of the hAM.

6.
Front Bioeng Biotechnol ; 8: 610544, 2020.
Article in English | MEDLINE | ID: mdl-33392174

ABSTRACT

Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.

7.
Cells ; 8(12)2019 12 15.
Article in English | MEDLINE | ID: mdl-31847452

ABSTRACT

Amniotic cells show exciting stem cell features, which has led to the idea of using living cells of human amniotic membranes (hAMs) in toto for clinical applications. However, under common cell culture conditions, viability of amniotic cells decreases rapidly, whereby reasons for this decrease are unknown so far. Recently, it has been suggested that loss of tissue tension in vivo leads to apoptosis. Therefore, the aim of this study was to investigate the effect of tissue distention on the viability of amniotic cells in vitro. Thereby, particular focus was put on vital mitochondria-linked parameters, such as respiration and ATP synthesis. Biopsies of hAMs were incubated for 7-21 days either non-distended or distended. We observed increased B-cell lymphoma 2-associated X protein (BAX)/B-cell lymphoma (BCL)-2 ratios in non-distended hAMs at day seven, followed by increased caspase 3 expression at day 14, and, consequently, loss of viability at day 21. In contrast, under distention, caspase 3 expression increased only slightly, and mitochondrial function and cellular viability were largely maintained. Our data suggest that a mechano-sensing pathway may control viability of hAM cells by triggering mitochondria-mediated apoptosis upon loss of tension in vitro. Further studies are required to elucidate the underlying molecular mechanisms between tissue distention and viability of hAM cells.


Subject(s)
Amnion/physiology , Mitochondria/physiology , Amnion/metabolism , Apoptosis/physiology , Biomechanical Phenomena/physiology , Caspase 3/metabolism , Cell Survival/physiology , Female , Humans , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Placenta/physiology , Pregnancy , Proto-Oncogene Proteins c-bcl-2/metabolism , Stress, Mechanical , Tensile Strength , bcl-2-Associated X Protein/metabolism
8.
Nature ; 570(7760): 224-227, 2019 06.
Article in English | MEDLINE | ID: mdl-31190014

ABSTRACT

Tropospheric ozone (O3) is a key component of air pollution and an important anthropogenic greenhouse gas1. During the twentieth century, the proliferation of the internal combustion engine, rapid industrialization and land-use change led to a global-scale increase in O3 concentrations2,3; however, the magnitude of this increase is uncertain. Atmospheric chemistry models typically predict4-7 an increase in the tropospheric O3 burden of between 25 and 50 per cent since 1900, whereas direct measurements made in the late nineteenth century indicate that surface O3 mixing ratios increased by up to 300 per cent8-10 over that time period. However, the accuracy and diagnostic power of these measurements remains controversial2. Here we use a record of the clumped-isotope composition of molecular oxygen (18O18O in O2) trapped in polar firn and ice from 1590 to 2016 AD, as well as atmospheric chemistry model simulations, to constrain changes in tropospheric O3 concentrations. We find that during the second half of the twentieth century, the proportion of 18O18O in O2 decreased by 0.03 ± 0.02 parts per thousand (95 per cent confidence interval) below its 1590-1958 AD mean, which implies that tropospheric O3 increased by less than 40 per cent during that time. These results corroborate model predictions of global-scale increases in surface pollution and vegetative stress caused by increasing anthropogenic emissions of O3 precursors4,5,11. We also estimate that the radiative forcing of tropospheric O3 since 1850 AD is probably less than +0.4 watts per square metre, consistent with results from recent climate modelling studies12.


Subject(s)
Atmosphere/chemistry , Ozone/analysis , Ozone/chemistry , Archives , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Human Activities/history , Oxygen Isotopes/analysis , Oxygen Isotopes/chemistry , Ozone/history , Reproducibility of Results , Stratospheric Ozone/analysis , Stratospheric Ozone/chemistry
9.
Stem Cells Int ; 2018: 9502451, 2018.
Article in English | MEDLINE | ID: mdl-30510589

ABSTRACT

The human amniotic membrane (hAM) has been used for tissue regeneration for over a century. In vivo (in utero), cells of the hAM are exposed to low oxygen tension (1-4% oxygen), while the hAM is usually cultured in atmospheric, meaning high, oxygen tension (20% oxygen). We tested the influence of oxygen tensions on mitochondrial and inflammatory parameters of human amniotic mesenchymal stromal cells (hAMSCs). Freshly isolated hAMSCs were incubated for 4 days at 5% and 20% oxygen. We found 20% oxygen to strongly increase mitochondrial oxidative phosphorylation, especially in placental amniotic cells. Oxygen tension did not impact levels of reactive oxygen species (ROS); however, placental amniotic cells showed lower levels of ROS, independent of oxygen tension. In contrast, the release of nitric oxide was independent of the amniotic region but dependent on oxygen tension. Furthermore, IL-6 was significantly increased at 20% oxygen. To conclude, short-time cultivation at 20% oxygen of freshly isolated hAMSCs induced significant changes in mitochondrial function and release of IL-6. Depending on the therapeutic purpose, cultivation conditions of the cells should be chosen carefully for providing the best possible quality of cell therapy.

10.
Front Physiol ; 9: 385, 2018.
Article in English | MEDLINE | ID: mdl-29695981

ABSTRACT

Efficient cardiac repair and ultimate regeneration still represents one of the main challenges of modern medicine. Indeed, cardiovascular disease can derive from independent conditions upsetting heart structure and performance: myocardial ischemia and infarction (MI), pharmacological cardiotoxicity, and congenital heart defects, just to name a few. All these disorders have profound consequences on cardiac tissue, inducing the onset of heart failure over time. Since the cure is currently represented by heart transplantation, which is extremely difficult due to the shortage of donors, much effort is being dedicated to developing innovative therapeutic strategies based on stem cell exploitation. Among the broad scenario of stem/progenitor cell subpopulations, fetal and perinatal sources, namely amniotic fluid and term placenta, have gained interest due to their peculiar regenerative capacity, high self-renewal capability, and ease of collection from clinical waste material. In this review, we will provide the state-of-the-art on fetal perinatal stem cells for cardiac repair and regeneration. We will discuss different pathological conditions and the main therapeutic strategies proposed, including cell transplantation, putative paracrine therapy, reprogramming, and tissue engineering approaches.

11.
Cell Transplant ; 27(1): 3-11, 2018 01.
Article in English | MEDLINE | ID: mdl-29562784

ABSTRACT

Over a century ago, clinicians started to use the human amniotic membrane for coverage of wounds and burn injuries. To date, literally thousands of different clinical applications exist for this biomaterial almost exclusively in a decellularized or denuded form. Recent reconsiderations for the use of vital human amniotic membrane for clinical applications would take advantage of the versatile cells of embryonic origin including the entirety of their cell organelles. Recently, more and more evidence was found, showing mitochondria to be involved in most fundamental cellular processes, such as differentiation and cell death. In this study, we focused on specific properties of mitochondria of vital human amniotic membrane and characterized bioenergetical parameters of 2 subregions of the human amniotic membrane, the placental and reflected amnion. We found significantly different levels of adenosine triphosphate (ATP) and extracellular reactive oxygen species, concentrations of succinate dehydrogenase, and lactate upon inhibition of ATP synthase in placental and reflected amnion. We also found significantly different rates of mitochondrial respiration in isolated human amniotic epithelial cells and human amniotic mesenchymal stromal cells, according to the subregions. Differences in metabolic activities were inversely related to mitochondrial DNA copy numbers in isolated cells of placental and reflected amnion. Based on significant differences of several key parameters of energy metabolism in 2 subregions of vital amnion, we propose that these metabolic differences of vital placental and reflected amnion could have critical impact on therapeutic applications. Inclusion of region-specific metabolic properties could optimize and fine-tune the clinical application of the human amniotic membrane and improve the outcome significantly.


Subject(s)
Amnion/cytology , Mesenchymal Stem Cells/cytology , Adenosine Triphosphate/metabolism , Cell Differentiation/physiology , Humans , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism
12.
Shock ; 50(4): 442-448, 2018 10.
Article in English | MEDLINE | ID: mdl-29112105

ABSTRACT

OBJECTIVES: We tested whether resuscitation supplemented with rat adipose-derived stem cells (ASCs) or secretome (conditioned media) of ASCs can ameliorate inflammation, cell/organ injury, and/or improve outcome after hemorrhagic traumatic shock (HTS). INTERVENTIONS: Rats were subjected to HTS and a resuscitation protocol that mimics prehospital restrictive reperfusion followed by an adequate reperfusion phase. Twenty minutes into the restrictive reperfusion, animals received an intravenous bolus of 2 × 10 cells (ASC group) or the secretome produced by 2 × 10 ASCs/24 h (ASC-Secretome group). Controls received the vehicle (Vehicle group). All rats were observed for 28-day survival. MEASUREMENTS AND MAIN RESULTS: HTS-induced inflammation represented by IL-6 was inhibited in the ASC (80%, P < 0.001) and in ASC-Secretome (59%, P < 0.01) group at 48 h compared with Vehicle group. At 24 h, HTS-induced liver injury reflected in plasma alanine aminotransferase was ameliorated by 36% (P < 0.001) in both the ASC and ASC-Secretome groups when compared with the Vehicle. There was no effect on kidney function and/or general cell injury markers. HTS induced a moderate 28-day mortality (18%) that was prevented (P = 0.08) in the ASC but not in the ASC-Secretome group (12%). CONCLUSIONS: Our data suggest that the ASC-secretome supplemented resuscitation following HTS, in the absence of the stem cells, exerts anti-inflammatory and liver protective effects. Given its ease of preparation, storage, availability, and application (in contrast to the stem cells) we believe that the cell-free secretome has a better therapeutic potential in the early phase of an acute hemorrhagic shock scenario.


Subject(s)
Adipose Tissue/cytology , Shock, Hemorrhagic/metabolism , Shock, Traumatic/metabolism , Animals , Culture Media, Conditioned/metabolism , Inflammation/metabolism , Male , Rats , Rats, Sprague-Dawley , Stem Cells/metabolism
13.
Cells Tissues Organs ; 200(5): 287-99, 2015.
Article in English | MEDLINE | ID: mdl-26372904

ABSTRACT

Tissue engineering approaches in nerve regeneration search for ways to support gold standard therapy (autologous nerve grafts) and to improve results by bridging nerve defects with different kinds of conduits. In this study, we describe electrospinning of aligned fibrin-poly(lactic-co-glycolic acid) (PLGA) fibers in an attempt to create a biomimicking tissue-like material seeded with Schwann cell-like cells (SCLs) in vitro for potential use as an in vivo scaffold. Rat adipose-derived stem cells (rASCs) were differentiated into SCLs and evaluated with flow cytometry concerning their differentiation and activation status [S100b, P75, myelin-associated glycoprotein (MAG), and protein 0 (P0)]. After receiving the proliferation stimulus forskolin, SCLs expressed S100b and P75; comparable to native, activated Schwann cells, while cultured without forskolin, cells switched to a promyelinating phenotype and expressed S100b, MAG, and P0. Human fibrinogen and thrombin, blended with PLGA, were electrospun and the alignment and homogeneity of the fibers were proven by scanning electron microscopy. Electrospun scaffolds were seeded with SCLs and the formation of Büngner-like structures in SCLs was evaluated with phalloidin/propidium iodide staining. Carrier fibrin gels containing rASCs acted as a self-shaping matrix to form a tubular structure. In this study, we could show that rASCs can be differentiated into activated, proliferating SCLs and that these cells react to minimal changes in stimulus, switching to a promyelinating phenotype. Aligned electrospun fibrin-PLGA fibers promoted the formation of Büngner-like structures in SCLs, which also rolled the fibrin-PLGA matrix into a tubular scaffold. These in vitro findings favor further in vivo testing.


Subject(s)
Fibrin/metabolism , Lactic Acid/metabolism , Nerve Regeneration/physiology , Peripheral Nerves/physiology , Polyglycolic Acid/metabolism , Schwann Cells/cytology , Tissue Engineering , Tissue Scaffolds , Animals , Cell Differentiation/physiology , Cells, Cultured , Male , Peripheral Nerves/cytology , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Tissue Engineering/methods
14.
Placenta ; 36(11): 1329-32, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26386652

ABSTRACT

Cells of the human amniotic membrane (hAM) have stem cell characteristics with low immunogenicity and anti-inflammatory properties. While hAM is an excellent source for tissue engineering, so far, its sub-regions have not been taken into account. We show that placental and reflected hAM differ distinctly in morphology and functional activity, as the placental region has significantly higher mitochondrial activity, however significantly less reactive oxygen species. Since mitochondria may participate in processes such as cell rescue, we speculate that amniotic sub-regions may have different potential for tissue regeneration, which may be crucial for clinical applications.


Subject(s)
Amnion/metabolism , Amnion/cytology , Cell Respiration , Female , Humans , Membrane Potential, Mitochondrial , Pregnancy
15.
Antioxid Redox Signal ; 22(7): 572-86, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25365698

ABSTRACT

AIMS: Increasing evidences suggest that, apart from activation of guanylyl cyclase, intracellular nitric oxide (NO) signaling is associated with an interaction between NO and reactive oxygen species (ROS) to modulate physiological or pathophysiological processes. The aim of this study was to understand the contribution of mitochondrial ROS (mtROS) to NO-mediated signaling in hepatocytes on inflammation. RESULTS: In rats treated with lipopolysaccharide (LPS), mitochondria-targeted antioxidants (mtAOX) (mitoTEMPO and SkQ1) reduced inducible nitric oxide synthase (iNOS) gene expression in liver, NO levels in blood and plasma, and markers of organ damage (lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase). In cultured hepatocytes, treated with inflammatory mediators, generated ex vivo by incubation of white blood cells with LPS, we observed an increase in NO and mtROS levels. l-NG-monomethyl arginine citrate, a NOS inhibitor, decreased both NO and mtROS levels. mtAOX reduced mtROS, cytoplasmic ROS levels, and expression of iNOS and interleukin (IL)-6. These data suggest that NO, generated by iNOS, elevates mtROS, which, in turn, diffuse into the cytoplasm and upregulate iNOS and IL-6. INNOVATION: Here, for the first time, we show that intracellular signaling pathways mediated by NO and ROS are linked to each other via mtROS and form an iNOS-mtROS feed-forward loop which aggravates liver failure on acute inflammation. CONCLUSION: Our results provide a mechanistic explanation of how NO and mtROS cooperate to conduct inflammatory intracellular signals. We anticipate our results to be the missing mechanistic link between acute systemic inflammation and liver failure.


Subject(s)
Inflammation/metabolism , Liver/metabolism , Mitochondria/metabolism , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Cell Line , Hepatocytes/drug effects , Hepatocytes/metabolism , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/pathology , Male , Mitochondria/drug effects , Nitric Oxide/biosynthesis , Nitric Oxide/blood , Organophosphorus Compounds/pharmacology , Piperidines/pharmacology , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects
16.
Cytotherapy ; 16(12): 1666-78, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25174738

ABSTRACT

BACKGROUND AIMS: Adipose-derived progenitor/stem cells (ASCs) are discussed as a promising candidate for various tissue engineering approaches. However, its applicability for the clinic is still difficult due to intra- and inter-donor heterogeneity and limited life span in vitro, influencing differentiation capacity as a consequence to decreased multipotency. METHODS: Extracorporeal shock wave treatment has been proven to be a suitable clinical tool to improve regeneration of a variety of tissues for several decades, whereas the mechanisms underlying these beneficial effects remain widely unknown. RESULTS: In this study we show that human and rat adipose derived stem cells respond strongly to repetitive shock wave treatment in vitro, resulting not only in maintenance and significant elevation of mesenchymal markers (CD73, CD90, CD105), but also in significantly increased differentiation capacity towards the osteogenic and adipogenic lineage as well as toward Schwann-cell like cells even after extended time in vitro, preserving multipotency of ASCs. CONCLUSIONS: ESWT might be a promising tool to improve ASC quality for cell therapy in various tissue engineering and regenerative medicine applications.


Subject(s)
Antigens, Differentiation/biosynthesis , Gene Expression Regulation , High-Energy Shock Waves , Multipotent Stem Cells/metabolism , Adult , Animals , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Female , Humans , Male , Multipotent Stem Cells/cytology , Rats , Rats, Sprague-Dawley
17.
Cell Tissue Bank ; 15(2): 227-39, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24166477

ABSTRACT

Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100ß, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100ß was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.


Subject(s)
Amnion/cytology , Cell Differentiation/physiology , Cell Lineage/physiology , Cell Separation , Schwann Cells/cytology , Amnion/metabolism , Cells, Cultured , Humans , Regeneration/physiology , Stem Cells/cytology
18.
Front Physiol ; 4: 101, 2013.
Article in English | MEDLINE | ID: mdl-23730288

ABSTRACT

Apart from ATP synthesis mitochondria have many other functions, one being nitrite reductase activity. Nitric oxide (NO) released from nitrite has been shown to protect the heart from ischemia/reperfusion (I/R) injury in a cGMP-dependent manner. However, the exact impact of mitochondria on the release of NO from nitrite in cardiomyocytes is not completely understood. Besides mitochondria, a number of non-mitochondrial metalloproteins have been suggested to facilitate this process. The aim of this study was to investigate the impact of mitochondria on the bioactivation of nitrite in HL-1 cardiomyocytes. The levels of nitrosyl complexes of hemoglobin (NO-Hb) and cGMP levels were measured by electron spin resonance spectroscopy and enzyme immunoassay. In addition the formation of free NO was determined by confocal microscopy as well as intracellular nitrite and S-nitrosothiols by chemoluminescence analysis. NO was released from nitrite in cell culture in an oxygen-dependent manner. Application of specific inhibitors of the respiratory chain, p450, NO synthases (NOS) and xanthine oxidoreductase (XOR) showed that all four enzymatic systems are involved in the release of NO, but more than 50% of NO is released via the mitochondrial pathway. Only NO released by mitochondria activated cGMP synthesis. Cardiomyocytes co-cultured with red blood cells (RBC) competed with RBC for nitrite, but free NO was detected only in HL-1 cells suggesting that RBC are not a source of NO in this model. Apart from activation of cGMP synthesis, NO formed in HL-1 cells diffused out of the cells and formed NO-Hb complexes. In addition nitrite was converted by HL-1 cells to S-nitrosyl complexes. In HL-1 cardiomyocytes, several enzymatic systems are involved in nitrite reduction to NO but only the mitochondrial pathway of NO release activates cGMP synthesis. Our data suggest that this pathway may be a key regulator of myocardial contractility especially under hypoxic conditions.

19.
Tissue Eng Part C Methods ; 17(4): 401-10, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21043997

ABSTRACT

Detection of osteogenic differentiation is crucial for bone tissue engineering. Despite established standard end point assays, there is increasing demand for methods allowing noninvasive kinetic differentiation monitoring. Reporter gene assays employing tissue-specific promoters and suitable reporter genes fulfill these requirements. Many promoters, however, exhibit only weak cis-activating potential, thus limiting their application to generate sensitive reporter gene assays. Therefore, the aim of this study was to design a reporter gene assay employing elements of the murine osteocalcin promoter coupled to a viral enhancer for signal amplification. Additionally, the system's practicability was enhanced by introducing a secreted luciferase as a quantifiable reporter gene. The constructs were tested in C2C12 cells stimulated with recombinant human bone morphogenetic protein 2 for osteogenic differentiation in two-dimensional and three-dimensional culture. Osteogenic differentiation was confirmed by standard assays for osteogenesis. The reporter gene signal was detected through a secreted luciferase or fluorescence microscopy for enhanced yellow fluorescent protein. The constructs exhibited strong activation upon treatment with recombinant human bone morphogenetic protein 2. Weak background expression was observable in negative controls, attributed to the pan-active viral enhancer. In conclusion, a novel enhancer/tissue-specific promoter combination allows specific signal-amplified, kinetic monitoring of osteogenic differentiation in a nonsample-destructive manner.


Subject(s)
Cell Differentiation , Genes, Reporter/genetics , Genetic Techniques , Osteogenesis , Alkaline Phosphatase/metabolism , Animals , Bone Morphogenetic Protein 2 , Bone Morphogenetic Proteins/pharmacology , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Fluorescence , Gene Expression Regulation/drug effects , Humans , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/enzymology , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/drug effects , Plasmids/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology , Staining and Labeling , Transfection , Transforming Growth Factor beta/pharmacology
20.
Tissue Eng Part C Methods ; 16(5): 937-45, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19958078

ABSTRACT

The in vitro and in vivo efficiency of fibroin microparticles as a delivery carrier for bone morphogenetic protein-2 (BMP-2) was evaluated. BMP-2 was encapsulated in silk fibroin particles that were produced by a simple and very mild processing method. The dose-response of BMP-2-loaded fibroin particles was examined in C2C12 cells, after 5 days of culture. The BMP-2 retained most of its activity as observed by the increase in alkaline phosphatase activity, which was much higher when BMP-2 was encapsulated into the particles rather than just surface-adsorbed. After 2 weeks of culture, increased mineralization was observed with BMP-2-loaded particles in comparison to soluble added growth factor. No significant cytotoxicity was detected. When implanted in a rat ectopic model, bone formation was observed by in vivo micro-computed tomography after 2 and 4 weeks postimplantation, with particles loaded with 5 or 12.5 microg BMP-2. An increase in bone density was observed over time. Histology revealed further evidence of ectopic bone formation, observed by strong alizarin red staining and osteocalcin immunostaining. Our findings show that fibroin microparticles may present an interesting option for future clinical applications in the bone tissue engineering field, and therefore, further studies have been planned.


Subject(s)
Bone Morphogenetic Protein 2/administration & dosage , Fibroins/administration & dosage , Silk/chemistry , Animals , Bone Development , Cell Line , Drug Carriers , Humans , In Vitro Techniques , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...