Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758505

ABSTRACT

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Subject(s)
Cardiomegaly , Isoproterenol , NAV1.5 Voltage-Gated Sodium Channel , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Rats , Cell Line , Isoproterenol/pharmacology , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Animals , Gene Knockdown Techniques , Humans , Myoblasts, Cardiac/metabolism , Energy Metabolism/genetics , Gene Expression Regulation/genetics
2.
Int J Biol Macromol ; 271(Pt 2): 132621, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795890

ABSTRACT

In conventional chemotherapy, the cancer cells can become highly resilient due to a phenomenon known as multi-drug resistance (MDR). The co-delivery of chemotherapeutic agents assisted with novel nanocarrier-based targeted DDS may counter the MDR issues and subsequently improve their therapeutic efficacy. In line with this, the present work deals with the development of 1D graphene oxide nanoscrolls (GONS)-based nano delivery system for co-delivery of chemosensitizer along with the chemotherapeutic agent. Herein, the 1D GONS nanocarrier was initially functionalized with chitosan (CS) biopolymer and folic acid (FA) further to enhance their biocompatibility and target-specific co-delivery. The resultant GONS-CS-FA (GCF) nanocarriers were co-loaded with doxorubicin (DOX) and caffeic acid (CA) at different weight proportions with respect to nanocarrier and drug composition. The optimum loading efficiency of 51.14 ± 1.47 % (DOX) and 49.70 ± 1.19 % (CA) was observed for GCF: drug ratio of 2.5 with drug composition of 1:1. In vitro release at pH 5 yielded ~83 % DOX and 75 % CA, compared to ~71 % DOX and 61 % CA at pH 7.4 over 7 days, suggesting a higher and targeted drug release in the cancer microenvironment. Cytotoxicity tests revealed selective apoptosis in cancer cells (A549) while maintaining cytocompatibility with normal cells (HEK293).


Subject(s)
Antineoplastic Agents , Chitosan , Doxorubicin , Drug Carriers , Folic Acid , Graphite , Folic Acid/chemistry , Folic Acid/pharmacology , Chitosan/chemistry , Humans , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Graphite/chemistry , Drug Liberation , Biocompatible Materials/chemistry , Drug Delivery Systems , Cell Survival/drug effects , Nanoparticles/chemistry , Cell Line, Tumor
3.
J Mater Chem B ; 12(21): 5098-5110, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38700289

ABSTRACT

The tunable properties of stimuli-responsive copolymers or hydrogels enable their application in different fields such as biomedical engineering, tissue engineering, or even drug release. Here we introduce a new PNIPAM-based triblock copolymer material comprising a controlled amount of a novel hydrophobic crosslinker 2,4'-diacryloyloxy benzophenone (DABP) and acrylic acid (AAc) to achieve lower critical solution temperature (LCST) between ambient and body temperatures. The dual stimuli-responsive p(NIPAM-co-DABP-co-AAc) triblock copolymer material and hydrogel were synthesized, and their temperature and pH-responsive behaviors were systematically investigated. The hydrogel exhibited excellent temperature and pH-responsive properties with an LCST of around 30 °C. Moreover, the synthesized copolymer has been demonstrated to be nontoxic both in vitro and in vivo. When the hydrogel was preloaded with the model drug 5-fluorouracil (5-FU), the designed hydrogel released the drug in a temperature and pH-controlled fashion. It was observed that the prepared hydrogel has the ability to entrap 5-FU, and the loading is more than 85%. In the case of temperature-controlled release, we observed almost complete release of 5-FU at lower temperatures and sustained release behavior at higher temperatures. In addition, the hydrogel matrix was able to retard the release of 5-FU in an acidic environment and selectively release 5-FU in a basic environment. By realizing how the hydrogel properties influence the release of drugs from preloaded hydrogels, it is possible to design new materials with myriad applications in the drug delivery field.


Subject(s)
Biocompatible Materials , Fluorouracil , Hydrogels , Temperature , Fluorouracil/pharmacology , Fluorouracil/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Animals , Humans , Drug Liberation , Mice , Drug Carriers/chemistry , Drug Carriers/chemical synthesis , Drug Delivery Systems
4.
Free Radic Biol Med ; 218: 94-104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582228

ABSTRACT

Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 µM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.


Subject(s)
Cardiotoxicity , Doxorubicin , Lamin Type A , Nuclear Envelope , Doxorubicin/toxicity , Lamin Type A/metabolism , Lamin Type A/genetics , Animals , Phosphorylation/drug effects , Nuclear Envelope/metabolism , Nuclear Envelope/drug effects , Rats , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Cardiotoxicity/etiology , Cell Line , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Antibiotics, Antineoplastic/toxicity , Male , Rats, Sprague-Dawley
5.
ACS Appl Mater Interfaces ; 16(17): 22326-22333, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635965

ABSTRACT

Low-temperature large-area growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) is critical for their integration with silicon chips. Especially, if the growth temperatures can be lowered below the back-end-of-line (BEOL) processing temperatures, the Si transistors can interface with 2D devices (in the back end) to enable high-density heterogeneous circuits. Such configurations are particularly useful for neuromorphic computing applications where a dense network of neurons interacts to compute the output. In this work, we present low-temperature synthesis (400 °C) of 2D tungsten diselenide (WSe2) via the selenization of the W film under ultrahigh vacuum (UHV) conditions. This simple yet effective process yields large-area, homogeneous films of 2D TMDs, as confirmed by several characterization techniques, including reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and different spectroscopy methods. Memristors fabricated using the grown WSe2 film are leveraged to realize a novel compact neuron circuit that can be reconfigured to enable homeostasis.

6.
Nat Commun ; 15(1): 2334, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485722

ABSTRACT

The ability to scale two-dimensional (2D) material thickness down to a single monolayer presents a promising opportunity to realize high-speed energy-efficient memristors. Here, we report an ultra-fast memristor fabricated using atomically thin sheets of 2D hexagonal Boron Nitride, exhibiting the shortest observed switching speed (120 ps) among 2D memristors and low switching energy (2pJ). Furthermore, we study the switching dynamics of these memristors using ultra-short (120ps-3ns) voltage pulses, a frequency range that is highly relevant in the context of modern complementary metal oxide semiconductor (CMOS) circuits. We employ statistical analysis of transient characteristics to gain insights into the memristor switching mechanism. Cycling endurance data confirms the ultra-fast switching capability of these memristors, making them attractive for next generation computing, storage, and Radio-Frequency (RF) circuit applications.

7.
iScience ; 27(2): 108764, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38313048

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for metabolic diseases. The bidirectional interactions between liver and gut made dysbiotic gut microbiome one of the key risk factors for NAFLD. In this study, we reported an increased abundance of Collinsella aerofaciens in the gut of obese and NASH patients living in India. We isolated C. aerofaciens from the fecal samples of biopsy-proven NASH patients and observed that their genome is enriched with carbohydrate metabolism, fatty acid biosynthesis, and pro-inflammatory functions and have the potency to increase ethanol level in blood. An animal study indicated that mice supplemented with C. aerofaciens had increased levels of circulatory ethanol, high levels of hepatic hydroxyproline, triglyceride, and inflammation in the liver. The present findings indicate that perturbation in the gut microbiome composition is a key risk factor for NAFLD.

8.
Life Sci ; 341: 122489, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38340979

ABSTRACT

Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.


Subject(s)
Cardiomyopathies , Muscular Dystrophies , Humans , Lamin Type A/genetics , Lamin Type A/chemistry , Lamin Type A/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Mutation , Polymers
9.
Biomed Environ Sci ; 36(11): 1045-1058, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38098324

ABSTRACT

Objective: In this study, the combined effect of two stressors, namely, electromagnetic fields (EMFs) from mobile phones and fructose consumption, on hypothalamic and hepatic master metabolic regulators of the AMPK/SIRT1-UCP2/FOXO1 pathway were elucidated to delineate the underlying molecular mechanisms of insulin resistance. Methods: Weaned Wistar rats (28 days old) were divided into 4 groups: Normal, Exposure Only (ExpO), Fructose Only (FruO), and Exposure and Fructose (EF). Each group was provided standard laboratory chow ad libitum for 8 weeks . Additionally, the control groups, namely, the Normal and FruO groups, had unrestricted access to drinking water and fructose solution (15%), respectively. Furthermore, the respective treatment groups, namely, the ExpO and EF groups, received EMF exposure (1,760 MHz, 2 h/day x 8 weeks). In early adulthood, mitochondrial function, insulin receptor signaling, and oxidative stress signals in hypothalamic and hepatic tissues were assessed using western blotting and biochemical analysis. Result: In the hypothalamic tissue of EF, SIRT1, FOXO 1, p-PI3K, p-AKT, Complex III, UCP2, MnSOD, and catalase expressions and OXPHOS and GSH activities were significantly decreased ( P < 0.05) compared to the Normal, ExpO, and FruO groups. In hepatic tissue of EF, the p-AMPKα, SIRT1, FOXO1, IRS1, p-PI3K, Complex I, II, III, IV, V, UCP2, and MnSOD expressions and the activity of OXPHOS, SOD, catalase, and GSH were significantly reduced compared to the Normal group ( P < 0.05). Conclusion: The findings suggest that the combination of EMF exposure and fructose consumption during childhood and adolescence in Wistar rats disrupts the closely interlinked and multi-regulated crosstalk of insulin receptor signals, mitochondrial OXPHOS, and the antioxidant defense system in the hypothalamus and liver.


Subject(s)
Cell Phone , Fructose , Humans , Rats , Animals , Adult , Rats, Wistar , Fructose/metabolism , Catalase , Receptor, Insulin/metabolism , AMP-Activated Protein Kinases/metabolism , Electromagnetic Fields/adverse effects , Sirtuin 1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Forkhead Box Protein O1/metabolism , Uncoupling Protein 2
10.
PLoS One ; 18(12): e0295839, 2023.
Article in English | MEDLINE | ID: mdl-38127951

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a complex disease which is characterized by the deposition of fats in the hepatocytes. Further, it progresses to nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. The increasing prevalence of NAFLD urges to find the non-invasive predictive biomarkers. In this study, we sought to determine increased BMP8B levels as predictors for the progression of NAFLD. METHODS: In the present cross-sectional study, circulatory BMP8B levels were measured in healthy controls (n = 56), NAFL patients (n = 72) and NASH patients (n = 77) by using an ELISA kit. Human hepatic BMP8B mRNA expression was measured in the liver tissue of control and NASH patients. In addition, BMP8B expression was confirmed by immunohistochemistry analysis. Furthermore, hepatic BMP8B mRNA expression was measured in wild type (WT) mice, WT mice fed with choline deficient high fat diet (WT+CDHF), iNOS (inducible nitric oxide synthase) knockout (iNOS-/-) mice, iNOS-/- fed with CDHF diet (iNOS-/-+CDHF). RESULTS: Increased circulatory BMP8B levels and BMP8B mRNA expression in hepatic tissue were significantly higher in NASH patients as compared with the control subjects. BMP8B expression was increased parallel to the fibrosis score in the hepatic tissues of NASH patients. It was observed that increased BMP8B levels have shown a significant positive correlation between aspartate aminotransferase (r = 0.31, p = 0.005), alanine aminotransferase (r = 0.23, p = 0.045), APRI (r = 0.30, p = 0.009), and Fib-4 score (r = 0.25, p = 0.036) in NASH patients. BMP8B has maintained a significant association with NASH and shown high sensitivity (92.91%) and specificity (92.73%) in NASH patients. Furthermore, increased BMP8B mRNA expression levels were observed in iNOS-/-+CDHF mice. CONCLUSION: Our study findings confirmed that BMP8B increases with the severity of the disease and BMP8B shows potential as a non-invasive predictive biomarker to identify NAFLD progression. However, future studies should investigate circulatory BMP8B levels in a large number of patients and also its impact on liver during NAFLD progression.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Biomarkers/metabolism , Bone Morphogenetic Proteins/metabolism , Cross-Sectional Studies , Liver/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , RNA, Messenger/metabolism
11.
Article in English | MEDLINE | ID: mdl-37930610

ABSTRACT

Gram-positive bacteria are responsible for a wide range of infections in humans. In most Gram-positive bacteria, sortase A plays a significant role in attaching virulence factors to the bacteria's cell wall. These cell surface proteins play a significant role in virulence and pathogenesis. Even though antibiotics are available to treat these infections, there is a continuous search for an alternative strategy due to an increase in antibiotic resistance. Thus, using anti-sortase drugs to combat these bacterial infections may be a promising approach. Here, we describe a method for targeting Gram-positive bacterial infection by combining curcumin and trans-chalcone as sortase A inhibitors. We have used curcumin and trans-chalcone alone and in combination as a sortase A inhibitor. We have seen ~78%, ~43%, and ~94% inhibition when treated with curcumin, trans-chalcone, and a combination of both compounds, respectively. The compounds have also shown a significant effect on biofilm formation, IgG binding, protein A recruitment, and IgG deposition. We discovered that combining curcumin and trans-chalcone is more effective against Gram-positive bacteria than either compound alone. The present work demonstrated that a combination of these natural compounds could be used as an antivirulence therapy against Gram-positive bacterial infection.

12.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37534494

ABSTRACT

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Subject(s)
Metabolic Syndrome , Rats , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/prevention & control , Blood Glucose/analysis , Blood Glucose/metabolism , Lysimachia , Fructose , Rats, Sprague-Dawley , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phenotype , Amino Acids/metabolism , Disease Progression , Candida/metabolism
13.
Prostaglandins Other Lipid Mediat ; 169: 106766, 2023 12.
Article in English | MEDLINE | ID: mdl-37479133

ABSTRACT

Platelets are one of the key mediators in thrombosis as well as in the progression of many diseases. An increase in platelet activation and a decrease in platelet count is associated with a plethora of liver diseases. In non-alcoholic fatty liver disease (NAFLD), platelets are highly activated and participate in the disease progression by enhancing the pro-thrombotic and pro-inflammatory state. Some altered platelet parameters such as mean platelet volume, plateletcrits, and platelet distribution width, aspartate transaminase to platelet ratio index, liver stiffness to platelet ratio and red cell distribution width to platelet ratio were found to be associated with NAFLD disease. Further, platelet contributes to the progression of cardiovascular complications in NAFLD is gaining the researcher's attention. An elevated mean platelet volume is known to enhance the risk of stroke, atherosclerosis, thrombosis, and myocardial infarction in NAFLD. Evidence also suggested that modulation in platelet function using aspirin, ticlopidine, and cilostazol help in controlling the NAFLD progression. Future research should focus on antiplatelet therapy as a treatment strategy that can control platelet activation in NAFLD as well as its cardiovascular risk. In the present review, we have detailed the role of platelets in NAFLD and its cardiovascular complications. We further aimed to highlight the growing need for antiplatelet therapy in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Thrombosis , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Blood Platelets , Platelet Activation , Liver
14.
J Mass Spectrom ; 58(8): e4964, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464563

ABSTRACT

Phlorizin (PRZ) is a natural product that belongs to a class of dihydrochalcones. The unique pharmacological property of PRZ is to block glucose absorption or reabsorption through specific and competitive inhibitors of the sodium/glucose cotransporters (SGLTs) in the intestine (SGLT1) and kidney (SGLT2). This results in glycosuria by inhibiting renal reabsorption of glucose and can be used as an adjuvant treatment for type 2 diabetes. The pharmacokinetic profile, metabolites of the PRZ, and efficacy of metabolites towards SGLTs are unknown. Therefore, the present study on the characterization of hitherto unknown in vivo metabolites of PRZ and pharmacokinetic profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) and accurate mass measurements is undertaken. Plasma, urine, and feces samples were collected after oral administration of PRZ to Sprague-Dawley rats to identify in vivo metabolites. Furthermore, in silico efficacy of the identified metabolites was evaluated by docking study. PRZ at an intraperitoneal dose of 400 mg/kg showed maximum concentration in the blood to 439.32 ± 8.84 ng/mL at 1 h, while phloretin showed 14.38 ± 0.33 ng/mL at 6 h. The pharmacokinetic profile of PRZ showed that the maximum concentration lies between 1 and 2 h after dosing. Decreased blood glucose levels and maximum excretion of glucose in the urine were observed when the PRZ and metabolites were observed in plasma. The identification and characterization of PRZ metabolites by LC/ESI/MS/MS further revealed that the phase I metabolites of PRZ are hydroxy (mono-, di-, and tri-) and reduction. Phase II metabolites are O-methylated, O-acetylated, O-sulfated, and glucuronide metabolites of PRZ. Further docking study revealed that the metabolites diglucuronide metabolite of mono-hydroxylated PRZ and mono-glucuronidation of PRZ could be considered novel inhibitors of SGLT1 and SGLT2, respectively, which show better binding affinities than their parent compound PRZ and the known inhibitors.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Rats , Animals , Rats, Sprague-Dawley , Hypoglycemic Agents/pharmacology , Tandem Mass Spectrometry/methods , Sodium-Glucose Transporter 2 , Phlorhizin/pharmacology , Spectrometry, Mass, Electrospray Ionization/methods , Glucose/metabolism , Sodium , Chromatography, High Pressure Liquid/methods
15.
Nano Lett ; 23(7): 2952-2957, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36996390

ABSTRACT

Threshold switches based on conductive metal bridge devices are useful as selectors to block sneak leakage paths in memristor arrays used in neuromorphic computing and emerging nonvolatile memory. We demonstrate that control of Ag-cation concentration in Al2O3 electrolyte and Ag filament size and density play an important role in the high on/off ratio and self-compliance of metal-ion-based volatile threshold switching devices. To control Ag-cation diffusion, we inserted an engineered defective graphene monolayer between the Ag electrode and the Al2O3 electrolyte. The Ag-cation migration and the Ag filament size and density are limited by the pores in the defective graphene monolayer. This leads to quantized conductance in the Ag filaments and self-compliance resulting from the formation and dissolution of the Ag conductive filament.

16.
Mol Omics ; 19(4): 321-329, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36752683

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterised by increased blood glucose levels. Patients with T2DM have a high risk of developing atherosclerotic coronary artery disease (CAD). CAD with T2DM has a complex etiology and the understanding of the pathophysiology of coronary artery disease (CAD) in the presence of diabetes is poor. Here, we have used LC-MS/MS-based untargeted metabolomics to unveil the alterations of metabolites in the serum of South-Indian patients diagnosed with T2DM, CAD and T2DM along with CAD (T2DM-CAD) compared with the healthy subjects (CT). Using untargeted metabolomics and network-based approaches, a set of metabolites highly co-expressed with T2DM-CAD pathogenesis were identified. Our results revealed that these metabolites belong to essential pathways such as amino acid metabolism, fatty acid metabolism and carbohydrate metabolism. The candidate metabolites identified by metabolomics study are branch chain amino acids, L-arginine, linoleic acid, L-serine, L-cysteine, fructose-6-phosphate, glycerol, creatine and 3-phosphoglyceric acid, and explain the pathogenesis of T2DM-assisted CAD. The identified metabolites could be used as potential prognostic markers to predict CAD in patients diagnosed with T2DM.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Glucose , Diabetes Mellitus, Type 2/metabolism , Amino Acids , Chromatography, Liquid , Case-Control Studies , Tandem Mass Spectrometry
17.
Nano Lett ; 23(4): 1152-1158, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36662611

ABSTRACT

Recently, nonvolatile resistive switching memory effects have been actively studied in two-dimensional (2D) transition metal dichalcogenides and boron nitrides to advance future memory and neuromorphic computing applications. Here, we report on radiofrequency (RF) switches utilizing hexagonal boron nitride (h-BN) memristors that afford operation in the millimeter-wave (mmWave) range. Notably, silver (Ag) electrodes to h-BN offer outstanding nonvolatile bipolar resistive switching characteristics with a high ON/OFF switching ratio of 1011 and low switching voltage below 0.34 V. In addition, the switch exhibits a low insertion loss of 0.50 dB and high isolation of 23 dB across the D-band spectrum (110 to 170 GHz). Furthermore, the S21 insertion loss can be tuned through five orders of current compliance magnitude, which increases the application prospects for atomic switches. These results can enable the switch to become a key component for future reconfigurable wireless and 6G communication systems.

18.
Curr Drug Targets ; 24(9): 718-727, 2023.
Article in English | MEDLINE | ID: mdl-36200209

ABSTRACT

Protein acetylation is a reversible central mechanism to control gene expression and cell signaling events. Current evidence suggests that pharmacological inhibitors for protein deacetylation have already been used in various disease conditions. Accumulating reports showed that several compounds that enhance histone acetylation in cells are in both the preclinical and clinical development stages targeting non-communicable diseases, which include cancerous and non-cancerous especially cardiovascular complications. These compounds are, in general, enzyme inhibitors and target a family of enzymes- called histone deacetylases (HDACs). Since HDAC inhibitors have shown to be helpful in preclinical models of cardiac complications, further research on developing novel compounds with high efficacy and low toxicity may be essential for treating cardiovascular diseases. In this review, we have highlighted the roles of HDAC and its inhibitors in cardiac complications.


Subject(s)
Heart Diseases , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Heart Diseases/drug therapy , Neoplasms/drug therapy , Protein Processing, Post-Translational , Acetylation
19.
J Ethnopharmacol ; 301: 115788, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36223844

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Antidesma acidum Retz, a perennial herb is known for its anti-diabetic potential among the traditional health care providers of the tribal communities of Manipur, India. Scientific validation of the ancient knowledge on traditional use of this plant with the help of modern tools and techniques can promote further research and its use in health care. AIM OF THE STUDY: Type 2 Diabetes (T2D) is a complex metabolic disorder and linked with hyperglycemia occurring from insufficiency in insulin secretion, action, or both. The aim of this study was to scientifically validate the traditional myth behind the uses of this plant material against diabetes. More specifically, it was aimed to determine the effect of methanolic extract of A. acidum leaves and/or any of its bioactive phytochemical(s), in enhancing insulin sensitization and subsequently stimulating the insulin signaling cascade of glucose metabolism. MATERIALS AND METHODS: Methanol was used for extraction from the leaf powder of A. acidum followed by bioactivity guided fractionation and isolation of most active component. Biological evaluation was performed to determine the glucose uptake ability against insulin resistance in skeletal muscle (L6) cells. To understand the detailed mechanism of actions of the purified compound, several molecular biology and structural biology experiments such as Western blot, siRNA transfection assay and molecular docking study were performed. RESULTS AND DISCUSSION: Bioactivity guided isolation of pure compound and spectral data analysis led us to identify the active component as Kaempferol 3-O-rutinoside (KOR) for the first time from the leaf of A. acidum. Over expression of NAD-dependent histone deacetylase, Sirtuin 1 (SIRT1) was observed following KOR treatment. SIRT1 plays an important role in the metabolic pathway and over expression of SIRT implies that it involves in insulin signaling directly or indirectly. Molecular docking and simulation study showed the strong involvement between KOR and SIRT1.Treatment with KOR resulted in significant over expression of SIRT1followed by upregulation of insulin-dependent p-IRS, AKT and AMPK signaling molecules, and stimulation of the GLUT4 translocation, which ultimately enhanced the glucose uptake in sodium palmitate-treated insulin resistant L6 myotubes. Further, the effect of KOR on IRS1, AKT and AMPK phosphorylation, GLUT4 translocation, and glucose uptake was attenuated in SIRT1-knockdown myotubes. CONCLUSION: Overall, the results of this study suggest that Kaempferol 3-O-rutinoside is the active component presents in the leaf of A. acidum which increases glucose consumption by inducing SIRT1 activation and consequently improves insulin sensitization. These results may find future applications in drug discovery research against T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Diabetes Mellitus, Type 2/drug therapy , AMP-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Molecular Docking Simulation , India , Muscle Fibers, Skeletal , Insulin/metabolism , Glucose/metabolism , Muscle, Skeletal , Glucose Transporter Type 4/metabolism
20.
Prog Mol Biol Transl Sci ; 192(1): 231-279, 2022.
Article in English | MEDLINE | ID: mdl-36280321

ABSTRACT

A number of microorganisms are co-evolved with the host, among which bacteria are the predominant organisms in the colonic site. The human microbiota contributes to various physiological functions, including the digestion and degradation of food components, harvesting of inaccessible nutrients, immune system regulation, maintenance of gut barrier function, and regulation of brain function and behavior. Microbes in the gut produce a wealth of metabolites from the exogenous dietary substances or endogenous metabolic compounds produced by the host and the resident microorganisms. These microbial-derived metabolites are the major factors in the host-microbiota cross-talk and influence the host's cardiometabolic health directly or indirectly depending on the structure and function of the microbial community. Evidence suggests that the perturbation in the composition and function of gut microbiota (referred to as gut dysbiosis) is associated with the development of several diseased conditions such as that of the gastrointestinal tract or colorectal cancer, metabolic diseases such as obesity, diabetes, immune disorders e.g. asthma, allergies, depression, anxiety and cardiometabolic disease. Several pathological conditions in the gastrointestinal tract may impair the intestinal barrier that allows translocation of bacteria and their metabolites to a remote organ such as the heart, which may ultimately be associated with systemic inflammation and the development of CVDs. In this chapter, we will discuss various gut microbiota-dependent metabolites, which have a significant role in cardiovascular diseases' pathologic processes and their risk factors. Finally, we will discuss the therapeutic potential of the gut-metabolite-heart axis as a novel target for the treatment of CVD and highlight the current updates and exciting directions for future research.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Humans , Dysbiosis , Bacteria , Inflammation/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...