Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289221

ABSTRACT

Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.


Subject(s)
Adaptor Proteins, Signal Transducing , F-Box Proteins , Receptor, EphB2 , Ubiquitin-Protein Ligases , Animals , Humans , Adaptor Proteins, Signal Transducing/genetics , Caenorhabditis elegans/genetics , Receptor, EphB2/genetics , Signal Transduction , Ubiquitin , Ubiquitin-Protein Ligases/genetics , Ubiquitination
2.
bioRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37693478

ABSTRACT

Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in C. elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signaling effector that controls diverse cellular functions.

3.
Cell Rep ; 42(7): 112670, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37392382

ABSTRACT

Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.


Subject(s)
Ephrins , Neoplasms , Ephrins/genetics , Proteomics , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Signal Transduction , ErbB Receptors/genetics , Neoplasms/genetics
4.
Clin Cancer Res ; 29(14): 2686-2701, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36976175

ABSTRACT

PURPOSE: Accumulating analyses of pro-oncogenic molecular mechanisms triggered a rapid development of targeted cancer therapies. Although many of these treatments produce impressive initial responses, eventual resistance onset is practically unavoidable. One of the main approaches for preventing this refractory condition relies on the implementation of combination therapies. This includes dual-specificity reagents that affect both of their targets with a high level of selectivity. Unfortunately, selection of target combinations for these treatments is often confounded by limitations in our understanding of tumor biology. Here, we describe and validate a multipronged unbiased strategy for predicting optimal co-targets for bispecific therapeutics. EXPERIMENTAL DESIGN: Our strategy integrates ex vivo genome-wide loss-of-function screening, BioID interactome profiling, and gene expression analysis of patient data to identify the best fit co-targets. Final validation of selected target combinations is done in tumorsphere cultures and xenograft models. RESULTS: Integration of our experimental approaches unambiguously pointed toward EGFR and EPHA2 tyrosine kinase receptors as molecules of choice for co-targeting in multiple tumor types. Following this lead, we generated a human bispecific anti-EGFR/EPHA2 antibody that, as predicted, very effectively suppresses tumor growth compared with its prototype anti-EGFR therapeutic antibody, cetuximab. CONCLUSIONS: Our work not only presents a new bispecific antibody with a high potential for being developed into clinically relevant biologics, but more importantly, successfully validates a novel unbiased strategy for selecting biologically optimal target combinations. This is of a significant translational relevance, as such multifaceted unbiased approaches are likely to augment the development of effective combination therapies for cancer treatment. See related commentary by Kumar, p. 2570.


Subject(s)
Antibodies, Bispecific , Neoplasms , Humans , ErbB Receptors/metabolism , Cell Line, Tumor , Cetuximab/pharmacology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/immunology , Neoplasms/drug therapy , Neoplasms/genetics
5.
Cell Rep ; 40(1): 111031, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35793621

ABSTRACT

EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.


Subject(s)
Receptors, Eph Family , Signal Transduction , CSK Tyrosine-Protein Kinase , Cell Communication , Software
6.
J Am Soc Nephrol ; 33(8): 1546-1567, 2022 08.
Article in English | MEDLINE | ID: mdl-35906089

ABSTRACT

BACKGROUND: Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS: We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS: Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION: These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.


Subject(s)
Podocytes , Actinin/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Glomerular Basement Membrane/metabolism , Mice , Oncogene Proteins/metabolism , Podocytes/metabolism , Proteomics
7.
Cell Chem Biol ; 27(6): 657-667.e6, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32220335

ABSTRACT

Targeting protein-protein interactions (PPIs) is a promising approach in the development of drugs for many indications. 14-3-3 proteins are a family of phosphoprotein-binding molecules with critical functions in dozens of cell signaling networks. 14-3-3s are abundant in the central nervous system, and the small molecule fusicoccin-A (FC-A), a tool compound that can be used to manipulate 14-3-3 PPIs, enhances neurite outgrowth in cultured neurons. New semisynthetic FC-A derivatives with improved binding affinity for 14-3-3 complexes have recently been developed. Here, we use a series of screens that identify these compounds as potent inducers of neurite outgrowth through a polypharmacological mechanism. Using proteomics and X-ray crystallography, we discover that these compounds extensively regulate the 14-3-3 interactome by stabilizing specific PPIs, while disrupting others. These results provide new insights into the development of drugs to target 14-3-3 PPIs, a potential therapeutic strategy for CNS diseases.


Subject(s)
14-3-3 Proteins/antagonists & inhibitors , Glycosides/pharmacology , Neurites/drug effects , Small Molecule Libraries/pharmacology , 14-3-3 Proteins/isolation & purification , 14-3-3 Proteins/metabolism , Animals , Cells, Cultured , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Glycosides/chemistry , Male , Models, Molecular , Molecular Conformation , Neurites/metabolism , Neuronal Outgrowth/drug effects , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley , Small Molecule Libraries/chemistry
8.
Mol Cell Proteomics ; 17(10): 1979-1990, 2018 10.
Article in English | MEDLINE | ID: mdl-30002203

ABSTRACT

Signals from cell surface receptors are often relayed via adaptor proteins. NCK1 and NCK2 are Src-Homology (SH) 2 and 3 domain adaptors that regulate processes requiring a remodeling of the actin cytoskeleton. Evidence from gene inactivation in mouse suggests that NCK1 and NCK2 are functionally redundant, although recent reports support the idea of unique functions for NCK1 and NCK2. We sought to examine this question further by delineating NCK1- and NCK2-specific signaling networks. We used both affinity purification-mass spectrometry and BioID proximity labeling to identify NCK1/2 signaling networks comprised of 98 proteins. Strikingly, we found 30 proteins restricted to NCK1 and 28 proteins specifically associated with NCK2, suggesting differences in their function. We report that Nck2-/-, but not Nck1-/- mouse embryo fibroblasts (MEFs) are multinucleated and display extended protrusions reminiscent of intercellular bridges, which correlate with an extended time spent in cytokinesis as well as a failure of a significant proportion of cells to complete abscission. Our data also show that the midbody of NCK2-deficient cells is not only increased in length, but also altered in composition, as judged by the mislocalization of AURKB, PLK1 and ECT2. Finally, we show that NCK2 function during cytokinesis requires its SH2 domain. Taken together, our data delineate the first high-confidence interactome for NCK1/2 adaptors and highlight several proteins specifically associated with either protein. Thus, contrary to what is generally accepted, we demonstrate that NCK1 and NCK2 are not completely redundant, and shed light on a previously uncharacterized function for the NCK2 adaptor protein in cell division.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytokinesis , Oncogene Proteins/metabolism , Proteomics , Adaptor Proteins, Signal Transducing/chemistry , Animals , HEK293 Cells , HeLa Cells , Humans , Mass Spectrometry , Mice , Oncogene Proteins/chemistry , Protein Interaction Mapping , Protein Transport , Structure-Activity Relationship , src Homology Domains
9.
Mol Cell ; 70(6): 995-1007.e11, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29910111

ABSTRACT

Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.


Subject(s)
Receptor Protein-Tyrosine Kinases/physiology , Receptor, EphA4/metabolism , src Homology Domains/physiology , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Cell Communication , Drosophila/metabolism , HEK293 Cells , HeLa Cells , Humans , Ligands , Oncogene Proteins/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Protein Binding , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Tyrosine/metabolism
10.
J Proteomics ; 189: 39-47, 2018 10 30.
Article in English | MEDLINE | ID: mdl-29425736

ABSTRACT

Protein phosphorylation often regulates interactions between components of signalling networks. Its tight regulation by opposing actions of kinases and phosphatases contribute to making this modification key in controlling the dynamic architecture of phosphorylation-dependent networks. The introduction in cell signalling research of long-standing targeted proteomics approaches such as selected reaction monitoring (SRM) combined with the development of state-of-the-art methods such as parallel reaction monitoring (PRM) and data-independent analysis (DIA), have allowed delineating temporal quantitative profiles of interactions networks. This review summarizes how targeted proteomics analyses have recently contributed to our comprehension of phosphorylation-dependent protein interaction networks and proposes how these could be applied to address clinical problems. BIOLOGICAL SIGNIFICANCE: Intracellular communication and information processing are performed by context-specific protein interaction networks that are often regulated by protein phosphorylation. Quantification of dynamic changes within these signalling networks is of critical importance to understand cell biology in normal and disease states, but remains challenging. Targeted proteomics approaches have contributed greatly to our understanding of these phosphorylation-dependent signalling networks.


Subject(s)
Phosphotransferases/metabolism , Proteome/metabolism , Proteomics/methods , Humans , Metabolic Networks and Pathways/physiology , Phosphorylation , Protein Processing, Post-Translational/physiology , Proteome/analysis
11.
Neuron ; 93(5): 1082-1093.e5, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28279353

ABSTRACT

Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage. 14-3-3 adaptors are hub proteins that are attractive targets to manipulate cell signaling. We identify a positive role for 14-3-3s in axon growth and uncover a developmental regulation of the phosphorylation and function of 14-3-3s. We show that fusicoccin-A (FC-A), a small-molecule stabilizer of 14-3-3 protein-protein interactions, stimulates axon growth in vitro and regeneration in vivo. We show that FC-A stabilizes a complex between 14-3-3 and the stress response regulator GCN1, inducing GCN1 turnover and neurite outgrowth. These findings show that 14-3-3 adaptor protein complexes are druggable targets and identify a new class of small molecules that may be further optimized for the repair of CNS damage.


Subject(s)
14-3-3 Proteins/metabolism , Axons/metabolism , Glycosides/metabolism , Signal Transduction/physiology , Animals , Animals, Newborn , Cells, Cultured , Mice , Nerve Regeneration/physiology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...