Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801080

ABSTRACT

DExD-box RNA proteins DDX39A and DDX39B are highly homologous paralogs that are conserved in vertebrates. They are required for energy-driven reactions involved in RNA processing. Although we have some understanding of how their functions overlap in RNA nuclear export, our knowledge of whether or not these proteins have specific or redundant functions in RNA splicing is limited. Our previous work has shown that DDX39B is responsible for regulating the splicing of important immune transcripts IL7R and FOXP3. In this study, we aimed to investigate whether DDX39A, a highly homologous paralog of DDX39B, plays a similar role in regulating alternative RNA splicing. We find that DDX39A and DDX39B have significant redundancy in their gene targets, but there are targets that uniquely require one or the other paralog. For instance, DDX39A is incapable of complementing defective splicing of IL7R exon 6 when DDX39B is depleted. This exon and other cassette exons that specifically depend on DDX39B have U-poor/C-rich polypyrimidine tracts in the upstream intron and this variant polypyrimidine tract is required for DDX39B dependency. This study provides evidence that despite a high degree of functional redundancy, DDX39A and DDX39B are selectively required for the splicing of specific pre-mRNAs.

2.
Genes (Basel) ; 14(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37895245

ABSTRACT

Alternative RNA splicing, a ubiquitous mechanism of gene regulation in eukaryotes, expands genome coding capacity and proteomic diversity. It has essential roles in all aspects of human physiology, including immunity. This review highlights the importance of RNA alternative splicing in regulating immune T cell function. We discuss how mutations that affect the alternative splicing of T cell factors can contribute to abnormal T cell function and ultimately lead to autoimmune diseases. We also explore the potential applications of strategies that target the alternative splicing changes of T cell factors. These strategies could help design therapeutic approaches to treat autoimmune disorders and improve immunotherapy.


Subject(s)
Alternative Splicing , RNA , Humans , Alternative Splicing/genetics , Proteomics , T-Lymphocytes , TCF Transcription Factors/genetics
3.
mBio ; 14(1): e0152622, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36515529

ABSTRACT

Poxviruses are often thought to evolve relatively slowly because they are double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic change, as illustrated by the recent increase in human-to-human transmission of monkeypox virus. Advances in deep sequencing technologies have demonstrated standing nucleotide variation in poxvirus populations, which has been underappreciated. There is also an emerging understanding of the role genomic architectural changes play in shaping poxvirus evolution. These mechanisms include homologous and nonhomologous recombination, gene duplications, gene loss, and the acquisition of new genes through horizontal gene transfer. In this review, we discuss these evolutionary mechanisms and their potential roles for adaption to novel host species and modulating virulence.


Subject(s)
Evolution, Molecular , Poxviridae , Humans , Poxviridae/genetics , Host Specificity , Gene Duplication
4.
Virus Evol ; 8(2): veac105, 2022.
Article in English | MEDLINE | ID: mdl-36483110

ABSTRACT

Cross-species spillover events are responsible for many of the pandemics in human history including COVID-19; however, the evolutionary mechanisms that enable these events are poorly understood. We have previously modeled this process using a chimeric vaccinia virus expressing the rhesus cytomegalovirus-derived protein kinase R (PKR) antagonist RhTRS1 in place of its native PKR antagonists: E3L and K3L (VACVΔEΔK + RhTRS1). Using this virus, we demonstrated that gene amplification of rhtrs1 occurred early during experimental evolution and was sufficient to fully rescue virus replication in partially resistant African green monkey (AGM) fibroblasts. Notably, this rapid gene amplification also allowed limited virus replication in otherwise completely non-permissive human fibroblasts, suggesting that gene amplification may act as a 'molecular foothold' to facilitate viral adaptation to multiple species. In this study, we demonstrate that there are multiple barriers to VACVΔEΔK + RhTRS1 replication in human cells, mediated by both PKR and ribonuclease L (RNase L). We experimentally evolved three AGM-adapted virus populations in human fibroblasts. Each population adapted to human cells bimodally, via an initial 10-fold increase in replication after only two passages followed by a second 10-fold increase in replication by passage 9. Using our Illumina-based pipeline, we found that some single nucleotide polymorphisms (SNPs) which had evolved during the prior AGM adaptation were rapidly lost, while thirteen single-base substitutions and short indels increased over time, including two SNPs unique to human foreskin fibroblast (HFF)-adapted populations. Many of these changes were associated with components of the viral RNA polymerase, although no variant was shared between all three populations. Taken together, our results demonstrate that rhtrs1 amplification was sufficient to increase viral tropism after passage in an 'intermediate species' and subsequently enabled the virus to adopt different, species-specific adaptive mechanisms to overcome distinct barriers to viral replication in AGM and human cells.

5.
bioRxiv ; 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-35702158

ABSTRACT

Cross-species spillover events are responsible for many of the pandemics in human history including COVID-19; however, the evolutionary mechanisms that enable these events are poorly understood. We have previously modeled this process using a chimeric vaccinia virus expressing the rhesus cytomegalovirus-derived PKR antagonist RhTRS1 in place of its native PKR antagonists; E3L and K3L (VACVΔEΔK+RhTRS1). Using this virus, we demonstrated that gene amplification of rhtrs1 occurred early during experimental evolution and was sufficient to fully rescue virus replication in partially resistant African green monkey (AGM) fibroblasts. Notably, this rapid gene amplification also allowed limited virus replication in otherwise completely non-permissive human fibroblasts, suggesting that gene amplification may act as a "molecular foothold" to facilitate viral adaptation to multiple species. In this study, we demonstrate that there are multiple barriers to VACVΔEΔK+RhTRS1 replication in human cells, mediated by both PKR and RNase L. We experimentally evolved three AGM-adapted virus populations in human fibroblasts. Each population adapted to human cells bimodally, via an initial 10-fold increase in replication after only two passages followed by a second 10-fold increase in replication by passage nine. Using our Illumina-based pipeline, we found that some SNPs which had evolved during the prior AGM adaptation were rapidly lost, while 13 single-base substitutions and short indels increased over time, including two SNPs unique to HFF adapted populations. Many of these changes were associated with components of the viral RNA polymerase, although no variant was shared between all three populations. Taken together, our results demonstrate that rhtrs1 amplification was sufficient to increase viral tropism after passage in an "intermediate species" and subsequently enabled the virus to adopt different, species-specific adaptive mechanisms to overcome distinct barriers to viral replication in AGM and human cells.

6.
J Virol ; 96(6): e0199621, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35108097

ABSTRACT

Early prognosis of abnormal vasculopathy is essential for effective clinical management of patients with severe dengue. An exaggerated interferon (IFN) response and release of vasoactive factors from endothelial cells cause vasculopathy. This study shows that dengue virus 2 (DENV2) infection of human umbilical vein endothelial cells (HUVEC) results in differentially regulated microRNAs (miRNAs) important for endothelial function. miR-573 was significantly downregulated in DENV2-infected HUVEC due to decreased peroxisome proliferator activator receptor gamma (PPARγ) activity. Restoring miR-573 expression decreased endothelial permeability by suppressing the expression of vasoactive angiopoietin 2 (ANGPT2). We also found that miR-573 suppressed the proinflammatory IFN response through direct downregulation of Toll-like receptor 2 (TLR2) expression. Our study provides a novel insight into miR-573-mediated regulation of endothelial function during DENV2 infection, which can be further translated into a potential therapeutic and prognostic agent for severe dengue patients. IMPORTANCE We need to identify molecular factors that can predict the onset of endothelial dysfunction in dengue patients. Increase in endothelial permeability during severe dengue infections is poorly understood. In this study, we focus on factors that regulate endothelial function and are dysregulated during DENV2 infection. We show that miR-573 rescues endothelial permeability and is downregulated during DENV2 infection in endothelial cells. This finding can have both diagnostic and therapeutic applications.


Subject(s)
Dengue Virus , Endothelium, Vascular , MicroRNAs , PPAR gamma , Severe Dengue , Angiopoietin-2 , Dengue Virus/pathogenicity , Dengue Virus/physiology , Endothelium, Vascular/physiopathology , Endothelium, Vascular/virology , Human Umbilical Vein Endothelial Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , PPAR gamma/genetics , Severe Dengue/metabolism
7.
PLoS One ; 16(6): e0253578, 2021.
Article in English | MEDLINE | ID: mdl-34166421

ABSTRACT

RATIONALE: There is little doubt that aerosols play a major role in the transmission of SARS-CoV-2. The significance of the presence and infectivity of this virus on environmental surfaces, especially in a hospital setting, remains less clear. OBJECTIVES: We aimed to analyze surface swabs for SARS-CoV-2 RNA and infectivity, and to determine their suitability for sequence analysis. METHODS: Samples were collected during two waves of COVID-19 at the University of California, Davis Medical Center, in COVID-19 patient serving and staff congregation areas. qRT-PCR positive samples were investigated in Vero cell cultures for cytopathic effects and phylogenetically assessed by whole genome sequencing. MEASUREMENTS AND MAIN RESULTS: Improved cleaning and patient management practices between April and August 2020 were associated with a substantial reduction of SARS-CoV-2 qRT-PCR positivity (from 11% to 2%) in hospital surface samples. Even though we recovered near-complete genome sequences in some, none of the positive samples (11 of 224 total) caused cytopathic effects in cultured cells suggesting this nucleic acid was either not associated with intact virions, or they were present in insufficient numbers for infectivity. Phylogenetic analysis suggested that the SARS-CoV-2 genomes of the positive samples were derived from hospitalized patients. Genomic sequences isolated from qRT-PCR negative samples indicate a superior sensitivity of viral detection by sequencing. CONCLUSIONS: This study confirms the low likelihood that SARS-CoV-2 contamination on hospital surfaces contains infectious virus, disputing the importance of fomites in COVID-19 transmission. Ours is the first report on recovering near-complete SARS-CoV-2 genome sequences directly from environmental surface swabs.


Subject(s)
COVID-19/genetics , Genome, Viral , Hospitals, Teaching , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA , Animals , COVID-19/epidemiology , COVID-19/transmission , Chlorocebus aethiops , Humans , SARS-CoV-2/isolation & purification , Vero Cells
8.
OMICS ; 20(2): 97-109, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26871867

ABSTRACT

Rabies is a zoonotic viral disease that invariably leads to fatal encephalitis, which can be prevented provided post-exposure prophylaxis is initiated timely. Ante-mortem diagnostic tests are inconclusive, and rabies is nontreatable once the clinical signs appear. A large number of host factors are responsible for the altered neuronal functions observed in rabies; however their precise role remains uninvestigated. We therefore used two-dimensional electrophoresis and mass spectrometry analysis to identify differentially expressed host proteins in an experimental murine model of rabies. We identified 143 proteins corresponding to 45 differentially expressed spots (p < 0.05) in neuronal tissues of Swiss albino mice in response to infection with neurovirulent rabies strains. Time series analyses revealed that a majority of the alterations occur at 4 to 6 days post infection, in particular affecting the host's cytoskeletal architecture. Extensive pathway analysis and protein interaction studies using the bioinformatic tools such as Ingenuity Pathway Analysis and STRING revealed novel pathways and molecules (e.g., protein ubiquitination) unexplored hitherto. Further activation/inhibition studies of these pathway molecular leads would be relevant to identify novel biomarkers and mechanism-based therapeutics for rabies, a disease that continues to severely impact global health.


Subject(s)
Brain/metabolism , Proteome/metabolism , Rabies/metabolism , Animals , Biomarkers/metabolism , Brain/virology , Host-Pathogen Interactions , Mice , Protein Interaction Maps , Proteomics , Rabies virus/physiology , Signal Transduction , Tandem Mass Spectrometry
9.
OMICS ; 19(2): 67-79, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25611201

ABSTRACT

Rabies is one of the oldest diseases known to mankind. The pathogenic mechanisms by which rabies virus infection leads to development of neurological disease and death are still poorly understood. Analysis of rabies-infected proteomes may help identify novel biomarkers for antemortem diagnosis of the disease and target molecules for therapeutic intervention. This article offers a literature synthesis and critique of the differentially expressed proteins that have been previously reported from various in vitro/in vivo model systems and naturally infected clinical specimens. The emerging data collectively indicate that, in addition to the obvious alterations in proteins involved in synapse and neurotransmission, a majority of cytoskeletal proteins are relevant as well, providing evidence of neuronal degeneration. An interesting observation is that certain molecules, such as KPNA4, could be potential diagnostic markers for rabies. Importantly, proteomic studies with body fluids such as cerebrospinal fluid provide newer insights into antemortem diagnosis. In order to develop a complete integrative biology picture, it is essential to analyze the entire CNS (region-wise) and in particular, the brain. We suggest the use of laboratory animal models over cell culture systems using a combinatorial proteomics approach, as the former is a closer match to the actual host response. While most studies have focused on the terminal stages of the disease in mice, a time-series analysis could provide deeper insights for therapy. Postgenomics technologies such as proteomics warrant more extensive applications in rabies and similar diseases impacting public health around the world.


Subject(s)
Proteome , Proteomics , Rabies virus , Rabies/metabolism , Animals , Biomarkers/metabolism , Humans , Proteomics/methods , Proteomics/trends , Rabies/genetics , Rabies/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...