Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 60(2): 323-33, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24132944

ABSTRACT

BACKGROUND: The dissemination of circulating tumor cells (CTCs) that cause metastases in distant organs accounts for the majority of cancer-related deaths. CTCs have been established as a cancer biomarker of known prognostic value. The enrichment of viable CTCs for ex vivo analysis could further improve cancer diagnosis and guide treatment selection. We designed a new flexible micro spring array (FMSA) device for the enrichment of viable CTCs independent of antigen expression. METHODS: Unlike previous microfiltration devices, flexible structures at the micro scale minimize cell damage to preserve viability, while maximizing throughput to allow rapid enrichment directly from whole blood with no need for sample preprocessing. Device performance with respect to capture efficiency, enrichment against leukocytes, viability, and proliferability was characterized. CTCs and CTC microclusters were enriched from clinical samples obtained from breast, lung, and colorectal cancer patients. RESULTS: The FMSA device enriched tumor cells with 90% capture efficiency, higher than 10(4) enrichment, and better than 80% viability from 7.5-mL whole blood samples in <10 min on a 0.5-cm(2) device. The FMSA detected at least 1 CTC in 16 out of 21 clinical samples (approximately 76%) compared to 4 out of 18 (approximately 22%) detected with the commercial CellSearch® system. There was no incidence of clogging in over 100 tested fresh whole blood samples. CONCLUSIONS: The FMSA device provides a versatile platform capable of viable enrichment and analysis of CTCs from clinically relevant volumes of whole blood.


Subject(s)
Cell Separation/instrumentation , High-Throughput Screening Assays/instrumentation , Neoplastic Cells, Circulating , Tissue Array Analysis/instrumentation , Cell Count , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation , Cell Separation/methods , Cell Survival , Equipment Design , High-Throughput Screening Assays/methods , Humans , Leukocytes/cytology , Models, Biological , Neoplastic Cells, Circulating/pathology , Tissue Array Analysis/methods
2.
Clin J Oncol Nurs ; 15(5): 481-92, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21951735

ABSTRACT

Radiation dermatitis, or radiodermatitis, is a significant symptom caused by radiation therapy for the treatment of cancerous and noncancerous conditions. Radiodermatitis can negatively affect patients' physical functioning and quality of life. The Oncology Nursing Society coordinated a Putting Evidence Into Practice (PEP) project team to develop a PEP resource summarizing current evidence for the management of patients with radiodermatitis. Oncology nurses play an important role in educating, assessing, and monitoring patients for this symptom. Many common nursing interventions for radiodermatitis are based on tradition or opinion and have not been researched thoroughly. In addition, evidence to support some current interventions in practice is lacking. This article presents information concerning radiodermatitis, summarizes the evidence-based review for its prevention and management, and identifies gaps in the literature, as well as opportunities for research, education, and practice.


Subject(s)
Evidence-Based Nursing , Neoplasms/radiotherapy , Oncology Nursing , Radiodermatitis/nursing , Bandages , Deodorants/therapeutic use , Humans , Hygiene/standards , Nursing Assessment , Nursing Methodology Research , Radiation-Protective Agents/therapeutic use , Radiodermatitis/etiology , Radiotherapy/adverse effects , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...