Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Invertebr Pathol ; 204: 108116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679367

ABSTRACT

Freshwater snails are integral to local ecosystems as a primary food source for various vertebrate species, thereby contributing significantly to ecological food webs. However, their role as intermediate hosts also makes them pivotal in the transmission of parasites. In Australia, research on freshwater snails has predominantly focused on their role as intermediate hosts for livestock parasites, while there has been limited exploration of the impact of these parasites on snail health and population dynamics. The aim of this study was to determine parasitic infection in freshwater snails. This study was conducted in the south-eastern region of Australia, in 2022. A total of 163 freshwater snails from four different species were collected and examined in the Murrumbidgee catchment area in the southeastern part of Australia during the Southern Hemisphere summer and autumn months (February to May). The species included Isidorella hainesii, Glyptophysa novaehollandica, Bullastra lessoni (endemic species), and Physella acuta (an introduced species). Through the analysis of sequence data from the various regions of the nuclear ribosomal DNA, we determined that the Digenea species in this study belonged to three distinct species, including Choanocotyle hobbsi, Petasiger sp. and an unidentified species belonging to Plagiorchioidea. Additionally, analysis of the sequences from Nematoda found in this study, revealed they could be categorized into two separate taxa, including Krefftascaris sp. and an unidentified nematode closely associated with plant and soil nematodes. This research holds significant implications for the future understanding and conservation of Australian freshwater ecosystems. Most parasites found in the present study complete their life cycle in snails and turtles. As many of freshwater snail and turtle species in Australia are endemic and face population threats, exploring the potential adverse impacts of parasitic infections on snail and turtle health, is crucial for advancing our understanding of these ecosystems and also paving the way for future research and conservation efforts. While none of the native snail species in the present study have been listed as endangered or threatened, this may simply be attributed to the absence of regular population surveys.


Subject(s)
Fresh Water , Snails , Trematoda , Animals , Snails/parasitology , Australia , Trematoda/physiology , Trematoda/genetics , Fresh Water/parasitology , Nematoda/physiology
2.
Food Waterborne Parasitol ; 32: e00202, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719030

ABSTRACT

Freshwater snails are important hosts in the life cycles of many medically important parasites, particularly for digenetic trematodes such as liver flukes and schistosomes. The current study was conducted to determine the infection of freshwater snails with parasites that can potentially be transmitted to humans within the Murrumbidgee catchment area which is an area of widespread intensive aquaculture in Australia. A total of 116 freshwater snails, belonging to three species (Isidorella hainesii, Glyptophysa novaehollandica and Bullastra lessoni), were examined for the presence of parasites in both man-made and natural environments. The analysis of sequence data, including the internal transcribed spacers (ITS) of nuclear ribosomal DNA, small subunit (18S) ribosomal DNA, and large subunit (28S) ribosomal DNA, indicated that the collected parasites belonged to two distinct genera, namely Clinostomum and Echinostoma. It is noteworthy that species of both of these digenean parasites have the potential to be zoonotic. Cercariae of both Clinostomum and Echinostoma were observed in snails collected from aquaculture settings. It is important to highlight that infectious stages of Clinostomum  has been previously detected in edible fish within Australia. This information raises concerns regarding the potential transmission of these parasites to humans through the consumption of contaminated fish. These findings emphasize the importance of monitoring and controlling the presence of Clinostomum and Echinostoma in aquaculture environments to minimise the risk of zoonotic infections and ensure food safety. Further research and surveillance are needed to better understand the prevalence, transmission dynamics, and potential public health implications associated with these parasites in the context of aquaculture in Australia.

SELECTION OF CITATIONS
SEARCH DETAIL
...