Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Biomater Res ; 28: 0005, 2024.
Article in English | MEDLINE | ID: mdl-38327614

ABSTRACT

Stem-cell-derived extracellular vesicles (EVs) are emerging as an alternative approach to stem cell therapy. Successful lyophilization of EVs could enable convenient storage and distribution of EV medicinal products at room temperature for long periods, thus considerably increasing the accessibility of EV therapeutics to patients. In this study, we aimed to identify an appropriate lyoprotectant composition for the lyophilization and reconstitution of stem-cell-derived EVs. MSC-derived EVs were lyophilized using different lyoprotectants, such as dimethyl sulfoxide, mannitol, trehalose, and sucrose, at varying concentrations. Our results revealed that a mixture of trehalose and sucrose at high concentrations could support the formation of amorphous ice by enriching the amorphous phase of the solution, which successfully inhibited the acceleration of buffer component crystallization during lyophilization. Lyophilized and reconstituted EVs were thoroughly evaluated for concentration and size, morphology, and protein and RNA content. The therapeutic effects of the reconstituted EVs were examined using a tube formation assay with human umbilical vein endothelial cells. After rehydration of the lyophilized EVs, most of their generic characteristics were well-maintained, and their therapeutic capacity recovered to levels similar to those of freshly collected EVs. The concentrations and morphologies of the lyophilized EVs were similar to the initial features of the fresh EV group until day 30 at room temperature, although their therapeutic capacity appeared to decrease after 7 days. Our study suggests an appropriate composition of lyoprotectants, particularly for EV lyophilization, which could encourage the applications of stem-cell-derived EV therapeutics in the health industry.

2.
Wounds ; 35(8): E261-E264, 2023 08.
Article in English | MEDLINE | ID: mdl-37643452

ABSTRACT

INTRODUCTION: PAD frequently co-occurs with diabetes, often leading to chronic nonhealing wounds. Foot gangrene and amputation are common outcomes of untreated CLI. CASE REPORT: A 67-year-old male with diabetes and deteriorating limb ischemia following surgical stress underwent successful surgical repair after emergency PTA of the SFA for extensive heel necrosis. After surgical debridement of necrotic heel tissue, the ABI on the affected side suddenly reduced to 0.36, but it improved to 1.06 at 4 weeks following stenting angioplasty, allowing the subsequent flap surgery to repair the heel defect. At the 1-year follow-up visit, the patient exhibited durable heel coverage and the restoration of weightbearing function. No signs or symptoms indicative of restenosis were evident in the blood vessel treated with stent angioplasty. CONCLUSION: This case highlights the importance of proper evaluation of critical ischemic conditions and the need for prompt endovascular interventions in preserving the at-risk diabetic foot.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Peripheral Vascular Diseases , Male , Humans , Aged , Diabetic Foot/complications , Diabetic Foot/surgery , Femoral Artery/surgery , Angioplasty , Ischemia/surgery
3.
J Med Chem ; 65(5): 4291-4317, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35179904

ABSTRACT

Glucokinase (GK) is a key regulator of glucose homeostasis, and its small-molecule activators represent a promising opportunity for the treatment of type 2 diabetes. Several GK activators have been advanced into clinical trials and have demonstrated promising efficacy; however, hypoglycemia represents a key risk for this mechanism. In an effort to mitigate this hypoglycemia risk while maintaining the efficacy of the GK mechanism, we have investigated a series of amino heteroaryl phosphonate benzamides as ''partial" GK activators. The structure-activity relationship studies starting from a "full GK activator" 11, which culminated in the discovery of the "partial GK activator" 31 (BMS-820132), are discussed. The synthesis and in vitro and in vivo preclinical pharmacology profiles of 31 and its pharmacokinetics (PK) are described. Based on its promising in vivo efficacy and preclinical ADME and safety profiles, 31 was advanced into human clinical trials.


Subject(s)
Azetidines , Diabetes Mellitus, Type 2 , Hypoglycemia , Organophosphonates , Azetidines/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucokinase , Humans , Hypoglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Organophosphonates/pharmacology , Organophosphonates/therapeutic use
4.
Nat Commun ; 12(1): 979, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579912

ABSTRACT

Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Animals , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Cycle , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Epigenomics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/metabolism , Protein-Arginine N-Methyltransferases/drug effects , Protein-Arginine N-Methyltransferases/genetics , RNA Splicing , Xenograft Model Antitumor Assays
5.
J Burn Care Res ; 39(1): 148-153, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28448297

ABSTRACT

Marjolin's ulcer is the malignant transformation of chronic nonhealing ulcers that have developed in burn scars or in any other chronic wound. Development of this malignancy tends to be slow and insidious, but it becomes more aggressive when the Marjolin's ulcer breaks free of the scar. We reviewed 24 cases of patients who complained of chronic burn wounds suspected to be Marjolin's ulcers. Histologically, chronic ulcer and pseudoepitheliomatous hyperplasia were 21%, respectively, and malignancy, including squamous cell carcinoma and leiomyosarcoma, were 58%. The mean latency period was 31.6 ± 13.0 years, and the majority of lesions occurred in the extremities. Pseudoepitheliomatous hyperplasia in chronic burn wounds, which is difficult to distinguish from squamous cell carcinoma and considered as a transitional state to becoming a malignant tumor, should be treated as a malignancy. An aggressive excision and reconstruction with free tissue transfer or regional flap transposition should be adopted for adequate ablation and definitive coverage, rather than skin graft and regular surveillance.


Subject(s)
Burns/complications , Cicatrix/etiology , Cicatrix/pathology , Skin Neoplasms/diagnosis , Skin Ulcer/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Burns/pathology , Chronic Disease , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Skin Neoplasms/etiology , Skin Neoplasms/therapy , Skin Ulcer/etiology , Skin Ulcer/therapy , Young Adult
6.
J Org Chem ; 82(19): 10376-10387, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28877441

ABSTRACT

An efficient large-scale synthesis of acid 1, a penultimate precursor to the HCV NS5A inhibitor BMS-986097, along with the final API step are described. Three routes were devised for the synthesis of 1 at the various stages of the program. The third generation route, the one that proved scalable and is the main subject of this paper, features a one-step Michael addition of t-butyl 2-((diphenylmethylene)amino)acetate (24) to (E)-benzyl 4-(1-hydroxycyclopropyl)but-2-enoate (28) followed by cyclization and chiral separation to form 27c, the core skeleton of cap piece 1. The epimerization and chiral resolution of 27c followed by further synthetic manipulations involving the carbamate formation, lactone reduction and cyclization, afforded cyclopropyl pyran 1. A detailed study of diphenylmethane deprotection via acid hydrolysis as well as a key lactone to tetrahydropyran conversion, in order to avoid a side reaction that afforded an alternative cyclization product, are discussed. This synthesis was applied to the preparation of more than 100 g of the final API BMS-986097 for toxicology studies.


Subject(s)
Antiviral Agents/chemical synthesis , Glycine/analogs & derivatives , Imidazoles/chemical synthesis , Pyrans/pharmacology , Pyrrolidines/chemical synthesis , Spiro Compounds/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Structure , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Viral Nonstructural Proteins/metabolism
7.
J Plast Reconstr Aesthet Surg ; 70(5): 666-672, 2017 May.
Article in English | MEDLINE | ID: mdl-28336447

ABSTRACT

BACKGROUND: We present a one-stage procedure for lengthening the fourth brachymetatarsia with autogenous iliac bone and cartilage cap grafting for the anatomical reconstruction of the metatarsophalangeal (MTP) joint METHODS: During the last 8 years, 56 feet in 41 patients with congenital brachymetatarsia of the fourth toe were corrected with a one-stage operation to reposition the articular cartilage cap to the distal part of interpositional iliac bone graft at the metatarsal epiphysis. RESULTS: The length of the harvested iliac bone graft was 22.9 mm on average. The mean fixation period was 58.5 days, and the mean gain in length and percentage increase was 20.9 mm and 39%, respectively. MRI showed a stable MTP joint over viable cartilage cap in 83.3% of the cases. Mean postoperative American Orthopedic Foot and Ankle Society lesser MTP-interphalangeal score was 82.0. Neither neurovascular impairment nor recurrence of brachymetatarsia occurred in the mean follow-up period of 43.6 months. All patients were satisfied with the postoperative cosmetic results. Thirteen patients (23.2%) complained of limited active dorsiflexion of the fourth toe, and extensor adhesion was released by extensor tenolysis in only one patient. In a single case of nonunion at the bone graft site, additional surgery was not necessary. CONCLUSIONS: Anatomical reconstruction of the fourth brachymetatarsia with one-stage interpositional iliac bone and cartilage cap grafting resulted in excellent cosmetic results and a physiologic MTP joint, providing the benefits of one-stage lengthening with a low complication rate. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.


Subject(s)
Bone Transplantation/methods , Cartilage/transplantation , Metatarsal Bones/abnormalities , Adolescent , Adult , Esthetics , Female , Humans , Ilium/transplantation , Male , Metatarsal Bones/surgery , Middle Aged , Patient Satisfaction , Retrospective Studies , Transplantation, Autologous , Treatment Outcome , Young Adult
8.
J Med Chem ; 59(17): 8042-60, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27564532

ABSTRACT

The discovery of a back-up to the hepatitis C virus NS3 protease inhibitor asunaprevir (2) is described. The objective of this work was the identification of a drug with antiviral properties and toxicology parameters similar to 2, but with a preclinical pharmacokinetic (PK) profile that was predictive of once-daily dosing. Critical to this discovery process was the employment of an ex vivo cardiovascular (CV) model which served to identify compounds that, like 2, were free of the CV liabilities that resulted in the discontinuation of BMS-605339 (1) from clinical trials. Structure-activity relationships (SARs) at each of the structural subsites in 2 were explored with substantial improvement in PK through modifications at the P1 site, while potency gains were found with small, but rationally designed structural changes to P4. Additional modifications at P3 were required to optimize the CV profile, and these combined SARs led to the discovery of BMS-890068 (29).


Subject(s)
Antiviral Agents/chemistry , Hepacivirus/drug effects , Isoquinolines/therapeutic use , Oligopeptides/chemistry , Sulfonamides/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Dogs , Drug Administration Schedule , Drug Resistance, Viral , Hepacivirus/genetics , Macaca fascicularis , Male , Models, Molecular , Oligopeptides/administration & dosage , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Rabbits , Rats, Sprague-Dawley , Replicon , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
9.
ACS Med Chem Lett ; 7(6): 590-4, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27326332

ABSTRACT

BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 µM) and PPARδ (EC50 > 100 µM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation. The synthesis, structure-activity relationship (SAR) studies, and in vivo pharmacology of 3 in preclinical animal models as well as its ADME profile are described.

10.
Tuberc Respir Dis (Seoul) ; 79(2): 85-90, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27066085

ABSTRACT

BACKGROUND: Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. METHODS: RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. RESULTS: RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. CONCLUSION: In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.

12.
J Med Chem ; 58(19): 7775-84, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26359680

ABSTRACT

In search for prodrugs to address the issue of pH-dependent solubility and exposure associated with 1 (BMS-582949), a previously disclosed phase II clinical p38α MAP kinase inhibitor, a structurally novel clinical prodrug, 2 (BMS-751324), featuring a carbamoylmethylene linked promoiety containing hydroxyphenyl acetic acid (HPA) derived ester and phosphate functionalities, was identified. Prodrug 2 was not only stable but also water-soluble under both acidic and neutral conditions. It was effectively bioconverted into parent drug 1 in vivo by alkaline phosphatase and esterase in a stepwise manner, providing higher exposure of 1 compared to its direct administration, especially within higher dose ranges. In a rat LPS-induced TNFα pharmacodynamic model and a rat adjuvant arthritis model, 2 demonstrated similar efficacy to 1. Most importantly, it was shown in clinical studies that prodrug 2 was indeed effective in addressing the pH-dependent absorption issue associated with 1.


Subject(s)
Organophosphates/pharmacology , Phenylacetates/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Arthritis, Experimental/drug therapy , Biological Availability , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Macaca fascicularis , Male , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Molecular Structure , Organophosphates/chemistry , Phenylacetates/chemistry , Prodrugs/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Rats, Inbred Lew , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship
14.
J Org Chem ; 80(14): 7019-32, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26151079

ABSTRACT

Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.


Subject(s)
Microsomes, Liver/metabolism , Piperidines/chemical synthesis , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/metabolism , Prodrugs/chemical synthesis , Ticlopidine/analogs & derivatives , Biological Phenomena , Clopidogrel , Humans , Microsomes, Liver/drug effects , Piperidines/chemistry , Platelet Aggregation Inhibitors/chemistry , Prodrugs/chemistry , Stereoisomerism , Ticlopidine/chemical synthesis , Ticlopidine/chemistry , Ticlopidine/metabolism
15.
PLoS One ; 10(4): e0123294, 2015.
Article in English | MEDLINE | ID: mdl-25849996

ABSTRACT

Stem cells have remarkable self-renewal ability and differentiation potency, which are critical for tissue repair and tissue homeostasis. Recently it has been found, in many systems (e.g. gut, neurons, and hematopoietic stem cells), that the self-renewal and differentiation balance is maintained when the stem cells divide asymmetrically. Drosophila male germline stem cells (GSCs), one of the best characterized model systems with well-defined stem cell niches, were reported to divide asymmetrically, where centrosome plays an important role. Utilizing time-lapse live cell imaging, customized tracking, and image processing programs, we found that most acentrosomal GSCs have the spectrosomes reposition from the basal end (wild type) to the apical end close to hub-GSC interface (acentrosomal GSCs). In addition, these apically positioned spectrosomes were mostly stationary while the basally positioned spectrosomes were mobile. For acentrosomal GSCs, their mitotic spindles were still highly oriented and divided asymmetrically with longer mitosis duration, resulting in asymmetric divisions. Moreover, when the spectrosome was knocked out, the centrosomes velocity decreased and centrosomes located closer to hub-GSC interface. We propose that in male GSCs, the spectrosome recruited to the apical end plays a complimentary role in ensuring proper spindle orientation when centrosome function is compromised.


Subject(s)
Asymmetric Cell Division , Centrosome/physiology , Spermatozoa/cytology , Stem Cells/cytology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Gene Knockout Techniques , Male , Mitosis
16.
Bioorg Med Chem Lett ; 24(5): 1294-8, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24513044

ABSTRACT

Spiropiperidine indoline-substituted diaryl ureas had been identified as antagonists of the P2Y1 receptor. Enhancements in potency were realized through the introduction of a 7-hydroxyl substitution on the spiropiperidinylindoline chemotype. SAR studies were conducted to improve PK and potency, resulting in the identification of compound 3e, a potent, orally bioavailable P2Y1 antagonist with a suitable PK profile in preclinical species. Compound 3e demonstrated a robust antithrombotic effect in vivo and improved bleeding risk profile compared to the P2Y12 antagonist clopidogrel in rat efficacy/bleeding models.


Subject(s)
Phenylurea Compounds/chemistry , Platelet Aggregation Inhibitors/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Receptors, Purinergic P2Y1/chemistry , Thiazoles/chemistry , Urea/analogs & derivatives , Administration, Oral , Animals , Dogs , Half-Life , Macaca fascicularis , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Rats , Receptors, Purinergic P2Y1/metabolism , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Thiazoles/therapeutic use , Thrombosis/drug therapy , Urea/pharmacokinetics , Urea/pharmacology , Urea/therapeutic use
17.
J Neurosci ; 33(40): 15793-8, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24089486

ABSTRACT

Actin polymerization is important for vesicle fission during clathrin-mediated endocytosis (CME), and it has been proposed that actin polymerization may promote vesicle fission during CME by providing direct mechanical forces. However, there is no direct evidence in support of this hypothesis. In the present study, the role of actin polymerization in vesicle fission was tested by analyzing the kinetics of the endocytic tubular membrane neck (the fission-pore) with cell-attached capacitance measurements to detect CME of single vesicles in a millisecond time resolution in mouse chromaffin cells. Inhibition in dynamin GTPase activity increased the fission-pore conductance (Gp), supporting the mechanical role of dynamin GTPase in vesicle fission. However, disruptions in actin polymerization did not alter the fission-pore conductance Gp, thus arguing against the force-generating role of actin polymerization in vesicle fission during CME. Similar to disruptions of actin polymerization, cholesterol depletion results in an increase in the fission-pore duration, indicating a role for cholesterol-dependent membrane reorganization in vesicle fission. Further experiments suggested that actin polymerization and cholesterol might function in vesicle fission during CME in the same pathway. Our results thus support a model in which actin polymerization promotes vesicle fission during CME by inducing cholesterol-dependent membrane reorganization.


Subject(s)
Actins/metabolism , Clathrin/metabolism , Endocytosis/physiology , Endosomes/metabolism , Animals , Cell Membrane/metabolism , Chromaffin Cells/metabolism , Dynamins/metabolism , Mice , Polymerization
18.
Org Lett ; 14(1): 214-7, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22148911

ABSTRACT

In the presence of AlMe(3), amines can be directly coupled with acids through dimethylaluminum amide intermediates to form the corresponding amides. A wide range of amines and acids including less nucleophilic amines, bulky amines, unprotected secondary amino acids, and acids with poor solubility were coupled smoothly to give the desired products in 55-98% yields.


Subject(s)
Acids/chemistry , Aluminum/chemistry , Amides/chemical synthesis , Amines/chemistry , Organometallic Compounds/chemistry , Molecular Structure
19.
J Med Chem ; 53(9): 3814-30, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20405922

ABSTRACT

Leukocyte function-associated antigen-1 (LFA-1), also known as CD11a/CD18 or alpha(L)beta(2), belongs to the beta(2) integrin subfamily and is constitutively expressed on all leukocytes. The major ligands of LFA-1 include three intercellular adhesion molecules 1, 2, and 3 (ICAM 1, 2, and 3). The interactions between LFA-1 and the ICAMs are critical for cell adhesion, and preclinical animal studies and clinical data from the humanized anti-LFA-1 antibody efalizumab have provided proof-of-concept for LFA-1 as an immunological target. This article will detail the structure-activity relationships (SAR) leading to a novel second generation series of highly potent spirocyclic hydantoin antagonists of LFA-1. With significantly enhanced in vitro and ex vivo potency relative to our first clinical compound (1), as well as demonstrated in vivo activity and an acceptable pharmacokinetic and safety profile, 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro-[4.4]nonan-7-yl)nicotinic acid (2e) was selected to advance into clinical trials.


Subject(s)
Hydantoins/pharmacokinetics , Immunologic Factors/chemistry , Lymphocyte Function-Associated Antigen-1/drug effects , Nicotinic Acids/pharmacokinetics , Humans , Hydantoins/pharmacology , Lymphocyte Function-Associated Antigen-1/chemistry , Lymphocyte Function-Associated Antigen-1/immunology , Nicotinic Acids/toxicity , Structure-Activity Relationship
20.
J Med Chem ; 53(7): 2854-64, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20218621

ABSTRACT

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.


Subject(s)
Drug Discovery , Glycine/analogs & derivatives , Oxazoles/chemistry , Oxazoles/pharmacology , PPAR alpha/agonists , Animals , Cell Line , Cricetinae , Crystallography, X-Ray , Drug-Related Side Effects and Adverse Reactions , Glycine/chemical synthesis , Glycine/chemistry , Glycine/pharmacology , Glycine/toxicity , Humans , Male , Mice , Models, Molecular , Oxazoles/chemical synthesis , Oxazoles/toxicity , PPAR alpha/chemistry , PPAR alpha/genetics , Protein Structure, Tertiary , Substrate Specificity , Transcriptional Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...