Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Res ; 32(2): 273-282, 2023.
Article in English | MEDLINE | ID: mdl-38186578

ABSTRACT

Fucoidan, a sulfate polysaccharide obtained from brown seaweed, has various bioactive properties, including anti-inflammatory, anti-cancer, anti-viral, anti-oxidant, anti-coagulant, anti-thrombotic, anti-angiogenic, and anti-Helicobacter pylori properties. However, the effects of low-molecular-weight fucoidan (LMW-F) on melanoma cell lines and three dimensional (3D) cell culture models are not well understood. This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma. Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F. MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells and patient-derived melanoma explants in a 3D-printed collagen scaffold. The PTEN/AKT pathway was found to be involved in the anti-melanoma effects of fucoidan. Western blot analysis revealed that LMW-F reduced the phosphorylation of Bcl-2 at Thr 56, which was associated with the prevention of anti-apoptotic activity of cancer cells. Our findings suggested that LMW-F could enhance anti-melanoma chemotherapy and improve the outcomes of patients with melanoma resistance.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Phosphorylation , Proto-Oncogene Proteins c-akt , Melanoma/drug therapy , Antineoplastic Agents/pharmacology , Antioxidants , Cell Proliferation , PTEN Phosphohydrolase
2.
ACS Appl Bio Mater ; 5(11): 5302-5309, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36265170

ABSTRACT

A previous study from our laboratory demonstrated the effects of in vitro three-dimensional (3D)-printed collagen scaffolds on the maintenance of cryopreserved patient-derived melanoma explants (PDMEs). However, it remains unknown whether 3D-printed collagen scaffolds (3D-PCSs) can be harmonized with any external culture conditions to increase the growth of cryopreserved PDMEs. In this study, 3D-PCSs were manufactured with a 3DX bioprinter. The 3D-printed collagen scaffold-on-frame construction was loaded with fragments of cryopreserved PDMEs (approximately 1-2 mm). 3D-PCSs loaded with patient-derived melanoma explants (3D-PCS-PDMEs) were incubated using two types of methods: (1) in transwells in the presence of a low concentration of oxygen (transwell-hypoxia method) and (2) using a traditional adherent attached to the bottom flat surface of a standard culture dish (traditional flat condition). In addition, we used six different types of media (DMEM high glucose, MEM α, DMEM/F12, RPMI1640, fibroblast basal medium (FBM), and SBM (stem cell basal medium)) for 7 days. The results reveal that the culture conditions of MEM α, DMEM/F12, and FBM using the transwell-hypoxia method show greater synergic effects on the outgrowth of the 3D-PCS-PDME compared to the traditional flat condition. In addition, the transwell-hypoxia method shows a higher expression of the MMP14 gene and the multidrug-resistant gene product 1 (MDR1) than in the typical culture method. Taken together, our findings suggest that the transwell-hypoxia method could serve as an improved, 3D alternative to animal-free testing that better mimics the skin's microenvironment using in vitro PDMEs.


Subject(s)
Melanoma , Tissue Scaffolds , Humans , Cell Differentiation , Collagen/pharmacology , Printing, Three-Dimensional , Hypoxia , Tumor Microenvironment
3.
J Clin Med ; 11(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35887717

ABSTRACT

Actinic keratosis (AK) is a precancerous lesion that can progress to invasive squamous cell carcinoma if untreated. However, no gold standard treatment has been established. We aimed to investigate the management of AK by comparing the effectiveness and treatment duration of treatment modalities, including cryotherapy, imiquimod (IMQ), and photodynamic therapy (PDT). We reviewed the medical records of 316 patients diagnosed with AK at Seoul St. Mary's Hospital from February 2015 to May 2020, and a total of 195 patients were included. The clearance rate was the highest in PDT, followed by cryotherapy and IMQ (82.4%, 71.2%, and 68.0%, respectively). The recurrence rate was the lowest in cryotherapy, followed by PDT and IMQ (3.5%, 6.7%, and 10.5%, respectively, p < 0.05). The average treatment duration was shortest with PDT, followed by IMQ and cryotherapy (5.5 weeks, 6.8 weeks, and 9.1 weeks, respectively, p < 0.05). The number of hospital visits was lowest for PDT, followed by cryotherapy and IMQ (1.8, 2.8, and 3.6, respectively, p < 0.05). PDT showed the highest clearance rate, a moderate recurrence rate, the shortest treatment duration, and the least number of visits, suggesting that PDT could be the first choice for treatment of AK. Considering the advantages as a topical agent, IMQ could also be a treatment option.

4.
J Clin Med ; 11(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743492

ABSTRACT

According to previous studies, the increased risk of cutaneous infectious disorders in patients with atopic dermatitis (AD) is related to impaired epidermal function, abnormal systemic immune function, and lower antimicrobial peptides. In this study, we analyzed the association between AD and cutaneous infectious disorders in the real world using sequential pattern mining (SPM). We analyzed National Health Insurance data from 2010-2013 using SPM to identify comorbid cutaneous infectious diseases and the onset durations of comorbidities. Patients with AD were at greater risk for molluscum contagiosum (adjusted odds ratio (aOR), 5.273), impetigo (aOR, 2.852), chickenpox (aOR, 2.251), otitis media (aOR, 1.748), eczema herpeticum (aOR, 1.292), and viral warts (aOR, 1.105). In SPM analysis, comorbidity of 1.06% shown in molluscum contagiosum was the highest value, and the duration of 77.42 days documented for molluscum contagiosum was the shortest onset duration among all the association rules. This study suggests that AD is associated with an increased risk of cutaneous infectious disorders. In particular, care should be taken regarding its high relevance with impetigo, molluscum contagiosum, and otitis media, which may help in preventing AD from worsening through appropriately preventing and managing the condition.

5.
J Clin Med ; 11(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628868

ABSTRACT

Treatment options for Bowen's disease (BD) include surgical excision, cryotherapy, curettage with cautery, topical 5-fluorouracil or imiquimod, and photodynamic therapy. However, it is not clear which treatment is the most effective due to lack of studies. We reviewed the electronic medical records of 158 patients who were diagnosed with BD and treated at Seoul St. Mary's Hospital from January 2011 to December 2020. Treatment modalities were surgical excision, cryotherapy, photodynamic therapy, and imiquimod. A total of 121 patients was enrolled in this study. The average treatment period was longest for cryotherapy, followed by imiquimod, PDT, and excision (119.53, 87.75, 68.50, and 1 day, respectively). The therapeutic efficacy was highest in the surgical excision group (100%) and lowest in the PDT group (62.5%). The recurrence rate was highest in the imiquimod group (33.33%). Surprisingly, only in patients treated with cryotherapy, satellite lesions developed in 9.09% of them during follow-up. Surgical excision exhibited the highest clearance rate and the lowest recurrence rate, and its treatment period was the shortest, confirming that it remains the gold standard. In contrast, since cryotherapy demonstrated a relatively high recurrence rate including development of satellite lesions, careful monitoring is required when performing cryotherapy for treatment of BD.

6.
Cells ; 10(3)2021 03 07.
Article in English | MEDLINE | ID: mdl-33800001

ABSTRACT

The development of an in vitro three-dimensional (3D) culture system with cryopreserved biospecimens could accelerate experimental research screening anticancer drugs, potentially reducing costs and time bench-to-beside. However, minimal research has explored the application of 3D bioprinting-based in vitro cancer models to cryopreserved biospecimens derived from patients with advanced melanoma. We investigated whether 3D-printed collagen scaffolds enable the propagation and maintenance of patient-derived melanoma explants (PDMEs). 3D-printed collagen scaffolds were fabricated with a 3DX bioprinter. After thawing, fragments from cryopreserved PDMEs (approximately 1-2 mm) were seeded onto the 3D-printed collagen scaffolds, and incubated for 7 to 21 days. The survival rate was determined with MTT and live and dead assays. Western blot analysis and immunohistochemistry staining was used to express the function of cryopreserved PDMEs. The results show that 3D-printed collagen scaffolds could improve the maintenance and survival rate of cryopreserved PDME more than 2D culture. MITF, Mel A, and S100 are well-known melanoma biomarkers. In agreement with these observations, 3D-printed collagen scaffolds retained the expression of melanoma biomarkers in cryopreserved PDME for 21 days. Our findings provide insight into the application of 3D-printed collagen scaffolds for closely mimicking the 3D architecture of melanoma and its microenvironment using cryopreserved biospecimens.


Subject(s)
Bioprinting/methods , Cryopreservation/methods , Melanoma/pathology , Skin Neoplasms/pathology , Tissue Culture Techniques , Tissue Scaffolds , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bioprinting/instrumentation , Cell Differentiation , Cell Proliferation , Cell Survival , Collagen/chemistry , Gene Expression Regulation, Neoplastic , Humans , Melanins/genetics , Melanins/metabolism , Melanoma/genetics , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Printing, Three-Dimensional , S100 Proteins/genetics , S100 Proteins/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Tissue Engineering , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...