Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 194(Suppl 2): 770, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36255542

ABSTRACT

The impact of high siltation and accumulation of organic and waste material in the intertidal of the dammed Ba Lai River in Vietnam as part of the Mekong estuarine system was investigated by means of marine free-living nematodes. Nutrients content (nitrate, ammonium, total phosphorus, total nitrogen), total suspended solids, total organic carbon, coliform, bacteria E. coli, pH, dissolved oxygen, total dissolved solids, methane and hydrogen sulfide concentration, and the nematode communities were characterized in sediment at selected stations along the river above and below the dam. Our results found elevated methane concentrations at the upstream side of the dam while hydrogen sulfide concentrations found to be highest in the downstream side of the dam. Furthermore, methane and hydrogen sulfide concentrations were correlated to nematode community characteristics such as trophic composition densities and genera composition. There was a clear difference between the communities above and below the dam. The discontinuous nematode community distribution indicated that the Ba Lai River is impacted by dam construction. Potentially the high deposition and eutrophication could turn the area into a methane-rich area related to predicted impact on nematodes.


Subject(s)
Ammonium Compounds , Hydrogen Sulfide , Nematoda , Water Pollutants, Chemical , Animals , Estuaries , Environmental Monitoring , Water Pollutants, Chemical/analysis , Nitrates , Vietnam , Escherichia coli , Phosphorus/analysis , Nitrogen/analysis , Carbon , Methane , Oxygen , Geologic Sediments/chemistry
2.
Environ Monit Assess ; 193(9): 565, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34383149

ABSTRACT

At the end of the dry season, March and April in Southeast Asia (SEA), agricultural refuse burnings occur over the region, mainly in the countries of Myanmar, Thailand, Laos, Cambodia and Vietnam, in preparation for the wet rice plantation. In this study, the impact of biomass burnings at the height of the burning period in March 2019 in mainland SEA on air quality and pollutant transport is modelled using the Weather Research Forecast WRF-Chem air quality model with emission input from the National Center for Atmospheric Research (NCAR) Fire Emission Inventory from NCAR (FINN). FINN is derived from satellite remote sensing data and species emission factors. A simulation of the dispersion of pollutants from biomass burnings from 13 to 19 March 2019, when the burnings was most intense, was performed. Validation of the model prediction using observed meteorological and pollutant data such as AOD measurements on ground from AERONET (Aerosol Robotic Network) and data from MODIS and CALIPSO satellites is carried out at various sites in the region. The results show that impact on air quality was most pronounced in Thailand and Laos but the effect of biomass burnings in mainland SEA at the end of the dry season is widespread in terms of pollutant dispersion and population exposure over the whole region and beyond. It is also shown that the transport of pollutants from biomass burnings in SEA to southern China, Taiwan and beyond is facilitated by the Truong Son mountain range, when under westerly wind, acting as a launching pad to uplift the pollutant plumes to higher altitude which then can be dispersed widely and transported farther from the biomass burning sources in Thailand and Laos.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Asia, Southeastern , Biomass , Environmental Monitoring , Particulate Matter/analysis , Seasons
3.
Environ Monit Assess ; 188(2): 106, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26797812

ABSTRACT

During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Fires , Forests , Models, Chemical , Aerosols/analysis , Asia, Southeastern , Biomass , Hazardous Substances , Particulate Matter/analysis , Seasons , Smoke
SELECTION OF CITATIONS
SEARCH DETAIL
...