Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 126(17): 170504, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33988398

ABSTRACT

A novel machine-learning algorithm based on single-shot measurements, named single-shot measurement learning, is demonstrated achieving the theoretical optimal accuracy. The method is at least as efficient as existing tomographic schemes and computationally much less demanding. The merits are attributed to the inclusion of weighted randomness in the learning rule governing the exploration of diverse learning routes. These advantages are explored experimentally by a linear-optical setup that is designed to draw the fullest potential of the proposed method. The experimental results show an unprecedented high level of accuracy for qubit-state learning and reproduction exhibiting (nearly) optimal infidelity scaling, O(N^{-0.983}), for the number N of unknown state copies, down to <10^{-5} without any compensation for experimental nonidealities. Extension to high dimensions is discussed with simulation results.

2.
Sci Rep ; 9(1): 3302, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30824753

ABSTRACT

Resource overhead problem caused by concatenation in quantum error correction (QEC) is of significant importance for the realization of fault-tolerant quantum computation (FTQC). To attack this problem, we propose a novel scheme by considering integrated FTQC architecture where the concatenation level is controlled dynamically; i.e., less (or more) concatenation levels are imposed by good (or poor) performance gates-we call this scheme "dynamic concatenation" in this sense. Such a dynamic concatenation is realizable in an integrated structure of FTQC, as the information of the concatenation can be communicated between classical system elements (e.g., compiler and system organizer) and the logical qubits in real-time. We derive the effective lower and upper bounds of the length of gate decomposition in order to achieve the practical advantage, namely of reduction of the overall operation time. By considering two non-trivial examples, it is shown that the aforementioned advantage can indeed be achieved in the presented scheme. Our result also provides an important scientific message, i.e., the interplay between "classical" and "quantum" can be helpful in QEC.

3.
Sci Rep ; 9(1): 681, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30679695

ABSTRACT

We present an experimental illustration on the quantum sensitivity of decision making machinery. In the decision making process, we consider the role of available information, say hint, whether it influences the optimal choices. To the end, we consider a machinery method of decision making in a probabilistic way. Our main result shows that in decision making process our quantum machine is more highly sensitive than its classical counterpart to the hints we categorize into "good" and "poor". This quantum feature originates from the quantum superposition involved in the decision making process. We also show that the quantum sensitivity persists before the quantum superposition is completely destroyed.

4.
Sci Rep ; 6: 21424, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26875685

ABSTRACT

In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.


Subject(s)
Game Theory , Quantum Theory , Brain/physiology , Decision Making , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...