Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14354, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658105

ABSTRACT

A fast and straightforward fabrication process for producing a robust, flexible, and transparent conductive film was demonstrated using nanowelding of Ag nanowires through pressure-assisted microwave irradiation. This innovative process effectively reduces the sheet resistance of the Ag nanowire transparent conductive film without causing any thermal distortion to the PET substrate. The microwave irradiation induces nanowelding between Ag nanowires, leading to a decrease in sheet resistance by forming nanowelding junctions. This selective heating of Ag nanowires further enhances the reduction in sheet resistance. Additionally, the application of pressure-assisted microwave irradiation allows the Ag nanowires to be embedded into the PET substrate, resulting in the formation of a robust film capable of withstanding cycling bending stress. The pressure-assisted microwave irradiation process proves to be a strong fabrication method for creating Ag nanowire transparent conductive films, especially when dealing with thermally weak substrate materials.

2.
Small ; 19(49): e2303912, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37612807

ABSTRACT

Development of highly efficient and robust electrocatalysts for oxygen evolution reaction (OER) under specific electrolyte is a key to actualize commercial low-temperature water electrolyzers. Herein, a rational catalyst design strategy is first reported based on amorphous-crystalline (a-c) interfacial engineering to achieve high catalytic activity and durability under diverse electrolytes that can be used for all types of low-temperature water electrolysis. Abundant a-c interface (ACI) is implemented into a hollow nanocubic (pre)-electrocatalyst which is derived from Ir-doped Ni-Fe-Zn Prussian blue analogues (PBA). The implemented c-a interface is well maintained during prolonged OER in alkaline, alkalized saline, and acidic electrolytes demonstrating its diverse functionality for water electrolysis. Notably, the final catalyst exhibits superior catalytic activity with excellent durability for OER compared to that of benchmark IrO2 catalyst, regardless of chemical environment of electrolytes. Hence, this work can be an instructive guidance for developing the ACI engineered electroctalyst which can be diversely used for different types of low-temperature electrolyzers.

3.
Materials (Basel) ; 16(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837369

ABSTRACT

Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.

4.
Materials (Basel) ; 14(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063188

ABSTRACT

In this study, the interfacial reactions and mechanical properties of solder joints after multiple reflows were observed to evaluate the applicability of the developed materials for high-temperature soldering for automotive electronic components. The microstructural changes and mechanical properties of Sn-Cu solders regarding Al(Si) addition and the number of reflows were investigated to determine their reliability under high heat and strong vibrations. Using differential scanning calorimetry, the melting points were measured to be approximately 227, 230, and 231 °C for the SC07 solder, SC-0.01Al(Si), and SC-0.03Al(Si), respectively. The cross-sectional analysis results showed that the total intermetallic compounds (IMCs) of the SC-0.03Al(Si) solder grew the least after the as-reflow, as well as after 10 reflows. Electron probe microanalysis and transmission electron microscopy revealed that the Al-Cu and Cu-Al-Sn IMCs were present inside the solders, and their amounts increased with increasing Al(Si) content. In addition, the Cu6Sn5 IMCs inside the solder became more finely distributed with increasing Al(Si) content. The Sn-0.5Cu-0.03Al(Si) solder exhibited the highest shear strength at the beginning and after 10 reflows, and ductile fracturing was observed in all three solders. This study will facilitate the future application of lead-free solders, such as an Sn-Cu-Al(Si) solder, in automotive electrical components.

5.
Materials (Basel) ; 14(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925006

ABSTRACT

This paper reported the enhancement in thermo-mechanical properties and chemical stability of porous SiCOH dielectric thin films fabricated with molecularly scaled pores of uniform size and distribution. The resulting porous dielectric thin films were found to exhibit far stronger resistance to thermo-mechanical instability mechanisms common to conventional SiCOH dielectric thin films without forgoing an ultralow dielectric constant (i.e., ultralow-k). Specifically, the elastic modulus measured by nano-indentation was 13 GPa, which was substantially higher than the value of 6 GPa for a porous low-k film deposited by a conventional method, while dielectric constant exhibited an identical value of 2.1. They also showed excellent resistance against viscoplastic deformation, as measured by the ball indentation method, which represented the degree of chemical degradation of the internal bonds. Indentation depth was measured at 5 nm after a 4-h indentation test at 400 °C, which indicated an ~89% decrease compared with conventional SiCOH film. Evolution of film shrinkage and dielectric constant after annealing and plasma exposure were reduced in the low-k film with a self-organized molecular film. Analysis of the film structure via Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated an increase in symmetric linear Si-O-Si molecular chains with terminal -CH3 bonds that were believed to be responsible for both the decrease in dipole moment/dielectric constant and the formation of molecular scaled pores. The observed enhanced mechanical and chemical properties were also attributed to this unique nano-porous structure.

6.
Materials (Basel) ; 14(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440741

ABSTRACT

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn-58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn-58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu-Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn-58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...