Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Asian J Surg ; 47(6): 2584-2588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519312

ABSTRACT

BACKGROUND: We calculated psoas muscle area (PMA) z-scores in high-risk neuroblastoma patients undergoing treatment to examine the clinical significance of sarcopenia in this cohort. METHODS: We analyzed retrospective data from patients aged 0-18 who were diagnosed with abdominal neuroblastoma between 2005 and 2019 at Samsung Medical Center. Patients categorized as high-risk undergone induction chemotherapy, neuroblastoma excision, and tandem high-dose chemotherapy with autologous stem cell transplantation (HDCT/auto-SCT) were selected. L3-4 lumbar levels on axial CT images were identified and we measured the areas of the left and right psoas muscles to determine tPMA. Total PMA z-scores were calculated using an open online tool. RESULTS: There were 45 boys and 25 girls with a mean age of 3.86 years. CT images taken at initial diagnosis and after tandem HDCT/auto-SCT were selected to calculate tPMA z-scores. Mean elapsed time between the two measurements was 12.91 ± 1.73 months. Mean tPMA z-score significantly decreased from -0.21 ± 1.29 to -0.66 ± 0.97 (p = 0.022). Length of hospital stay was significantly longer in the group of patients whose tPMA z-scores decreased by more than .45 (177.62 ± 28.82 days vs. 165.75 ± 21.34 days, p = 0.049). Presence of sarcopenia at initial diagnosis was a significant risk factor for bacterial infection during neuroblastoma treatment. CONCLUSION: tPMA z-scores in high-risk neuroblastoma patients decreased significantly following a treatment regimen that included induction chemotherapy, tumor resection surgery, and HDCT/auto-SCT. A greater decrease in tPMA z-score was associated with longer hospital stay during treatment.


Subject(s)
Neuroblastoma , Psoas Muscles , Sarcopenia , Tomography, X-Ray Computed , Humans , Psoas Muscles/diagnostic imaging , Neuroblastoma/therapy , Neuroblastoma/pathology , Neuroblastoma/surgery , Sarcopenia/diagnostic imaging , Sarcopenia/etiology , Male , Female , Child, Preschool , Retrospective Studies , Child , Infant , Adolescent , Length of Stay , Transplantation, Autologous , Induction Chemotherapy , Infant, Newborn , Stem Cell Transplantation , Combined Modality Therapy
2.
Clin Interv Aging ; 9: 1709-19, 2014.
Article in English | MEDLINE | ID: mdl-25336936

ABSTRACT

PURPOSE: Freezing of gait (FOG), increasing the fall risk and limiting the quality of life, is common at the advanced stage of Parkinson's disease, typically in old ages. A simple and unobtrusive FOG detection system with a small calculation load would make a fast presentation of on-demand cueing possible. The purpose of this study was to find a practical FOG detection system. PATIENTS AND METHODS: A sole-mounted sensor system was developed for an unobtrusive measurement of acceleration during gait. Twenty patients with Parkinson's disease participated in this study. A simple and fast time-domain method for the FOG detection was suggested and compared with the conventional frequency-domain method. The parameters used in the FOG detection were optimized for each patient. RESULTS: The calculation load was 1,154 times less in the time-domain method than the conventional method, and the FOG detection performance was comparable between the two domains (P=0.79) and depended on the window length (P<0.01) and dimension of sensor information (P=0.03). CONCLUSION: A minimally constraining sole-mounted sensor system was developed, and the suggested time-domain method showed comparable FOG detection performance to that of the conventional frequency-domain method. Three-dimensional sensor information and 3-4-second window length were desirable. The suggested system is expected to have more practical clinical applications.


Subject(s)
Acceleration , Gait Apraxia/diagnosis , Parkinson Disease/diagnosis , Accelerometry/instrumentation , Accidental Falls , Aged , Aged, 80 and over , Female , Gait Apraxia/complications , Gait Apraxia/psychology , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/psychology , Quality of Life/psychology , Risk Factors , Signal Processing, Computer-Assisted/instrumentation , Weight-Bearing
3.
Biomed Mater Eng ; 24(6): 2273-81, 2014.
Article in English | MEDLINE | ID: mdl-25226927

ABSTRACT

This study aims at the quantification of fine change in parkinsonian rigidity at the wrist during deep brain stimulation (DBS) using a portable measurement system and objective mechanical measures. The rigidity of fourteen limbs was evaluated during DBS surgery. The resistive torque to imposed movement was measured for every setting where a reduction in rigidity was perceived by a neurologist. Quantitative mechanical measures derived from experimental data included viscoelastic properties, work, impulse and mechanical impedance. Most mechanical measures could discriminate the optimal setting from baseline (electrode at stereotactic initial position without electrical stimulation) and the highest significance was achieved by viscous damping constant (p<0.001). Spearman correlation coefficients between mechanical measures and clinical score for multiple settings (averaged for 14 limbs) were 0.51-0.77 and the best correlation was shown for viscosity (ρ=0.77 ± 0.22). The results suggest that intraoperative quantification of rigidity during DBS surgery is possible with the suggested system and measures, which would be helpful for the adjustment of electrode position and stimulation parameters.


Subject(s)
Deep Brain Stimulation/methods , Monitoring, Intraoperative/methods , Muscle Rigidity/physiopathology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Wrist Joint/physiopathology , Deep Brain Stimulation/instrumentation , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Middle Aged , Monitoring, Intraoperative/instrumentation , Parkinson Disease/diagnosis , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome , Viscosity
4.
Biomed Mater Eng ; 24(6): 2291-7, 2014.
Article in English | MEDLINE | ID: mdl-25226929

ABSTRACT

Patients with Parkinson's disease (PD) suffer from an increased resistance to passive movement of a joint, called as rigidity. Stretch reflex and shortening reaction were suggested to be associated to the rigidity, however, the mechanism is still poorly understood. We hypothesized that the co-contraction of antagonistic muscle pairs is enhanced in patients with PD and this induces resistance persisting throughout its range of motion. To test the hypothesis, we developed a motorized device for application of passive movement of the wrist joint and investigated the co-contraction of muscles during passive movement. It consisted of a servo motor connected to a rotating axis with a timing belt, load cell for the measurement of resistance, and other elements for the fixation of arm and hand. Repetitive passive movement was applied to the wrist joint of patients. Co-contraction of antagonistic muscle pairs was significantly greater in patients than in normal subjects (p<0.001), suggesting that the enhanced co-contraction is associated with the mechanical resistance during passive movement, i.e. rigidity. Co-contraction during extended state was greater than the other states (p<0.001), which implies that the length-feedback mechanism may play the important role in co-contraction.


Subject(s)
Motion Therapy, Continuous Passive/instrumentation , Muscle Contraction , Muscle Rigidity/physiopathology , Muscle, Skeletal/physiopathology , Parkinson Disease/physiopathology , Postural Balance , Robotics/instrumentation , Aged , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Muscle Rigidity/etiology , Parkinson Disease/complications , Range of Motion, Articular , Reproducibility of Results , Sensitivity and Specificity , Wrist Joint/physiopathology
5.
Biomed Mater Eng ; 24(6): 2681-8, 2014.
Article in English | MEDLINE | ID: mdl-25226972

ABSTRACT

The purpose of this study was to investigate 1) the effect of feet distance on static postural balance and 2) the location of natural feet distance and its possible role in the relationship of feet distance and postural balance. Static balance tests were performed on a force platform for 100 s with six different feet distances (0, 5, 10, 15, 20, 25 cm). Measures of postural balance included mean amplitude of horizontal ground reaction force (GRF) as well as the mean distance and velocity of the center of pressure (COP). All measures were discomposed into anterioposterior and mediolateral directions. ANOVA and post-hoc comparison were performed for all measures with feet distance as an independent factor. Also measured was the feet distance at the natural stance preferred by each subject. All measures significantly varied with feet distance (p<0.001). Mean distance of COP showed monotonic decrease with feet distance. Mean amplitude of horizontal GRF as well as mean velocity of COP showed U-shaped pattern (decrease followed by increase) with the minimum at the feet distance of 15 cm or 20 cm, near which the natural feet distance of 16.5 (SD 3.8) cm was located. COP is regarded to be an approximation of the center of mass (hence the resultant performance of postural control) in an inverted pendulum model with the horizontal GRF ignored. On the other hand, horizontal GRF is the direct cause of horizontal acceleration of a center of mass. The present result on horizontal GRF shows that the effort of postural control is minimized around the feet distance of natural standing and implies why the natural stance is preferred.


Subject(s)
Acceleration , Foot/physiology , Movement/physiology , Postural Balance/physiology , Posture/physiology , Task Performance and Analysis , Adult , Female , Humans , Male , Pressure , Reproducibility of Results , Sensitivity and Specificity
6.
Biomed Mater Eng ; 24(6): 2707-13, 2014.
Article in English | MEDLINE | ID: mdl-25226975

ABSTRACT

Incidence of falling among elderly female has been reported to be much higher than that of elderly male. Although the gender differences in the elderly were reported for the static postural sway, there has been no investigation of the gender difference for the dynamic postural sway. This study investigates how age and gender affect the postural sway during dynamic squat and stand-up movement. 124 subjects (62 subjects for each of young and elderly) performed consecutive squat and stand-up movement, 2 times in one session, and 2 sessions per subject. Center of pressure (COP) was measured using force platform during the test. Outcome measures included peak-to-peak sways of the COP (COP sway) in the sagittal plane (anteroposterior) and frontal plane (mediolateral) and also those normalized by body height. Two-way ANOVA and post-hoc comparisons were performed for the outcome measures with the independent factors of age and gender. All outcome measures, excluding mediolateral COP sway, showed significant interaction of age and gender (p<0.05). Post-hoc test revealed that only female showed increase in COP sway with age. When normalized by height, increase in COP sways (both directions) with age significant only in women resulted in greater sways in elderly female than elderly male. This may be related to the greater fall rate of elderly female than that of elderly men while performing dynamic activities.


Subject(s)
Aging/physiology , Models, Biological , Movement/physiology , Postural Balance/physiology , Posture/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Computer Simulation , Female , Humans , Male , Models, Statistical , Reproducibility of Results , Sensitivity and Specificity , Sex Characteristics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...