Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 50(5): 1306-1317, 2023 04.
Article in English | MEDLINE | ID: mdl-36635462

ABSTRACT

PURPOSE: The recent conditional FDA approval of Aducanumab (Adu) for treating Alzheimer's disease (AD) and the continued discussions around that decision have increased interest in immunotherapy for AD and other brain diseases. Reliable techniques for brain imaging of antibodies may guide decision-making in the future but needs further development. In this study, we used 89Zr-immuno-PET to evaluate the targeting and distribution of a bispecific brain-shuttle IgG based on Adu with transferrin receptor protein-1 (TfR1) shuttling mechanism, mAbAdu-scFab8D3, designated Adu-8D3, as a candidate theranostic for AD. We also validated the 89Zr-immuno-PET platform as an enabling technology for developing new antibody-based theranostics for brain disorders. METHODS: Adu, Adu-8D3, and the non-binding control construct B12-8D3 were modified with DFO*-NCS and radiolabeled with 89Zr. APP/PS1 mice were injected with 89Zr-labeled mAbs and imaged on days 3 and 7 by positron emission tomography (PET). Ex vivo biodistribution was performed on day 7, and ex vivo autoradiography and immunofluorescence staining were done on brain tissue to validate the PET imaging results and target engagement with amyloid-ß plaques. Additionally, [89Zr]Zr-DFO*-Adu-8D3 was evaluated in 3, 7, and 10-month-old APP/PS1 mice to test its potential in early stage disease. RESULTS: A 7-fold higher brain uptake was observed for [89Zr]Zr-DFO*-Adu-8D3 compared to [89Zr]Zr-DFO*-Adu and a 2.7-fold higher uptake compared to [89Zr]Zr-DFO*-B12-8D3 on day 7. Autoradiography and immunofluorescence of [89Zr]Zr-DFO*-Adu-8D3 showed co-localization with amyloid plaques, which was not the case with the Adu and B12-8D3 conjugates. [89Zr]Zr-DFO*-Adu-8D3 was able to detect low plaque load in 3-month-old APP/PS1 mice. CONCLUSION: 89Zr-DFO*-immuno-PET revealed high and specific uptake of the bispecific Adu-8D3 in the brain and can be used for the early detection of Aß plaque pathology. Here, we demonstrate that 89Zr-DFO*-immuno-PET can be used to visualize and quantify brain uptake of mAbs and contribute to the evaluation of biological therapeutics for brain diseases.


Subject(s)
Alzheimer Disease , Radioisotopes , Mice , Animals , Tissue Distribution , Positron-Emission Tomography/methods , Antibodies, Monoclonal , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Amyloid , Zirconium , Cell Line, Tumor
2.
Synapse ; 67(9): 586-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23504964

ABSTRACT

Dopamine D2 receptor positron emission tomography (PET) radioligands have proven useful for indirect assessment of the endogenous dopamine concentration in the living brain. On the contrary, dopamine D1 receptor antagonist radioligands have shown no sensitivity to changes in the dopamine concentration. A recent approach to enhance the sensitivity of radioligands to the dopamine concentration has been the development of dopamine D2 receptor agonist radioligands. The aim of this study was to evaluate the dopamine sensitivity of a dopamine D1 receptor agonist radioligand. For this purpose, we developed (S)-[¹¹C]N-methyl-NNC 01-0259 ((S)-[¹¹C]1) and characterized the receptor binding of (S)-[¹¹C]1 using in vitro receptor binding assays and in vivo PET measurements in monkeys. In vitro, both enantiomers of 1 were partial dopamine D1 receptor agonists, with (S)-1 having a 10-50 times higher affinity than (R)-1. PET studies in monkey confirmed the stereoselectivity of [¹¹C]1 in vivo. In monkey, administration of the dopamine D1-like receptor antagonist (R)-(+)-SCH 23390 decreased the striatal binding potential of (S)-[¹¹C]1 by 97%, but administration of the dopamine concentration enhancer d-amphetamine did not affect (S)-[¹¹C]1 binding. We conclude that the agonist (S)-[¹¹C]1 provides specific binding to dopamine D1-like receptors, possibly representing binding to the high-affinity state of the receptors. The partial dopamine D1 receptor agonist radioligand has, however, no enhanced sensitivity to endogenous dopamine concentrations in comparison with antagonist radioligands.


Subject(s)
Benzazepines/pharmacology , Benzofurans/pharmacology , Brain/diagnostic imaging , Dopamine Agonists/pharmacology , Dopamine/metabolism , Positron-Emission Tomography , Radiopharmaceuticals/pharmacology , Receptors, Dopamine D1/agonists , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Macaca fascicularis , Protein Binding , Receptors, Dopamine D1/metabolism
3.
J Pharmacol Exp Ther ; 340(3): 666-75, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22171087

ABSTRACT

1-[2-(2,4-Dimethylphenyl-sulfanyl)-phenyl]-piperazine (Lu AA21004) is a human (h) serotonin (5-HT)(3A) receptor antagonist (K(i) = 3.7 nM), h5-HT(7) receptor antagonist (K(i) = 19 nM), h5-HT(1B) receptor partial agonist (K(i) = 33 nM), h5-HT(1A) receptor agonist (K(i) = 15 nM), and a human 5-HT transporter (SERT) inhibitor (K(i) = 1.6 nM) (J Med Chem 54:3206-3221, 2011). Here, we confirm that Lu AA21004 is a partial h5-HT(1B) receptor agonist [EC(50) = 460 nM, intrinsic activity = 22%] using a whole-cell cAMP-based assay and demonstrate that Lu AA21004 is a rat (r) 5-HT(7) receptor antagonist (K(i) = 200 nM and IC(50) = 2080 nM). In vivo, Lu AA21004 occupies the r5-HT(1B) receptor and rSERT (ED(50) = 3.2 and 0.4 mg/kg, respectively) after subcutaneous administration and is a 5-HT(3) receptor antagonist in the Bezold-Jarisch reflex assay (ED(50) = 0.11 mg/kg s.c.). In rat microdialysis experiments, Lu AA21004 (2.5-10.0 mg/kg s.c.) increased extracellular 5-HT, dopamine, and noradrenaline in the medial prefrontal cortex and ventral hippocampus. Lu AA21004 (5 mg/kg per day for 3 days; minipump subcutaneously), corresponding to 41% rSERT occupancy, significantly increased extracellular 5-HT in the ventral hippocampus. Furthermore, the 5-HT(3) receptor antagonist, ondansetron, potentiated the increase in extracellular levels of 5-HT induced by citalopram. Lu AA21004 has antidepressant- and anxiolytic-like effects in the rat forced swim (Flinders Sensitive Line) and social interaction and conditioned fear tests (minimal effective doses: 7.8, 2.0, and 3.9 mg/kg). In conclusion, Lu AA21004 mediates its pharmacological effects via two pharmacological modalities: SERT inhibition and 5-HT receptor modulation. In vivo, this results in enhanced release of several neurotransmitters and antidepressant- and anxiolytic-like profiles at doses for which targets in addition to the SERT are occupied. The multimodal activity profile of Lu AA21004 is distinct from that of current antidepressants.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Piperazines/therapeutic use , Sulfides/therapeutic use , Animals , Biogenic Monoamines/analysis , Citalopram/pharmacology , Humans , Male , Ondansetron/pharmacology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1B/metabolism , Receptors, Serotonin/metabolism , Reflex/drug effects , Serotonin Plasma Membrane Transport Proteins/metabolism , Sulfides/pharmacokinetics , Sulfides/pharmacology , Vocalization, Animal/drug effects , Vortioxetine
4.
J Med Chem ; 43(25): 4910-8, 2000 Dec 14.
Article in English | MEDLINE | ID: mdl-11124000

ABSTRACT

We have previously shown that the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, 2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA, 2), binds to AMPA receptors in a manner different from that of AMPA (1) itself and that 2, in contrast to 1, also binds to kainic acid receptor sites. To elucidate the structural requirements for selective activation of the site/conformation of AMPA receptors recognized by 2, a number of isosteric analogues of 2 have now been synthesized and pharmacologically characterized. The compound 2-amino-3-(5-carboxy-3-methoxy-4-isoxazolyl)propionic acid (3a) (IC(50) = 0.11 microM; EC(50) = 1.2 microM), which is a regioisostere of 2 with a methoxy group substituted for the methyl group, was approximately equipotent with 2 (IC(50) = 0.020 microM; EC(50) = 1.0 microM) as an inhibitor of [(3)H]AMPA binding and as an AMPA agonist, respectively, whereas the corresponding 3-ethoxy analogue 3b (IC(50) = 1.0 microM; EC(50) = 4.8 microM) was slightly weaker. The analogues 3c-e, containing C3 alkoxy groups, were an order of magnitude weaker than 3b, whereas the additional steric bulk of the alkoxy groups of 3f-i or the presence of an acidic hydroxyl group at the 3-position of the isoxazole ring of 3j prevented interaction with AMPA receptor sites. The 2-amino-3-(2-alkyl-5-carboxy-3-oxo-4-isoxazolyl)propionic acids 4a,b, i, which are regioisosteric analogues of 3a,b,i, showed negligible interaction with AMPA recognition sites. Similarly, replacement of the carboxyl group of 3b by isosteric tetrazolyl or 1,2,4-triazolyl groups to give 5 and 6, respectively, or conversion of 3b into analogue 7, in which the diaminosquaric acid group has been bioisosterically substituted for the alpha-aminocarboxylic acid unit, provided compounds completely devoid of effect at AMPA receptors. In contrast to the parent compound ACPA (2) (IC(50) = 6.3 microM), none of the analogues described showed detectable inhibitory effect on [(3)H]kainic acid receptor binding.


Subject(s)
Excitatory Amino Acid Agonists/chemical synthesis , Isoxazoles/chemical synthesis , Propionates/chemical synthesis , Receptors, AMPA/agonists , Animals , Brain/metabolism , Brain/physiology , Electrophysiology , Excitatory Amino Acid Agonists/chemistry , Excitatory Amino Acid Agonists/pharmacology , In Vitro Techniques , Isoxazoles/chemistry , Isoxazoles/pharmacology , Ligands , Propionates/chemistry , Propionates/pharmacology , Radioligand Assay , Rats , Receptors, AMPA/metabolism , Receptors, Kainic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Stereoisomerism , Structure-Activity Relationship
5.
Chirality ; 12(10): 705-13, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11054828

ABSTRACT

We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric compound 1-Me-Tet-AMPA is essentially inactive. We here report the enantiopharmacology of 2-Me-Tet-AMPA in radioligand binding and cortical wedge electrophysiological assay systems, and using cloned AMPA (GluR1-4) and kainic acid (KA) (GluR5, 6, and KA2) receptor subtypes expressed in Xenopus oocytes. 2-Me-Tet-AMPA was resolved using preparative chiral HPLC. Zwitterion (-)-2-Me-Tet-AMPA was assigned the (R)-configuration based on an X-ray crystallographic analysis supported by the elution order of (-)- and (+)-2-Me-Tet-AMPA using four different chiral HPLC columns and by circular dichroism spectra. None of the compounds tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed comparable potencies (EC(50) = 1.3-3.5 microM) at receptors formed by the AMPA receptor subunits (GluR1-4) in Xenopus oocytes, more potent effects and a substantially higher degree of subunit selectivity were observed for (S)-2-Me-Tet-AMPA: GluR1o (EC(50) = 0.16 microM), GluR1o/GluR2i (EC(50) = 0.12 microM), GluR3o (EC(50) = 0.014 microM) and GluR4o (EC(50) = 0.009 microM). At the KA-preferring receptors GluR5 and GluR6/KA2, (S)-2-Me-Tet-AMPA showed much weaker agonist effects (EC(50) = 8.7 and 15.3 microM, respectively). It is concluded that (S)-2-Me-Tet-AMPA is a subunit-selective and highly potent AMPA receptor agonist and a potentially useful tool for studies of physiological AMPA receptor subtypes.


Subject(s)
Excitatory Amino Acid Agonists/chemistry , Isoxazoles/chemistry , Receptors, AMPA/agonists , Tetrazoles/chemistry , Animals , Crystallography, X-Ray , Excitatory Amino Acid Agonists/pharmacology , Female , Isoxazoles/pharmacology , Models, Molecular , Molecular Structure , Oocytes/physiology , Radioligand Assay , Receptors, AMPA/genetics , Receptors, AMPA/physiology , Recombinant Proteins/agonists , Recombinant Proteins/metabolism , Stereoisomerism , Structure-Activity Relationship , Tetrazoles/pharmacology , Transcription, Genetic , Xenopus laevis
6.
J Med Chem ; 40(18): 2831-42, 1997 Aug 29.
Article in English | MEDLINE | ID: mdl-9288165

ABSTRACT

A number of 3-isoxazolol bioisosteres, 7a-i, of (S)-glutamic acid (Glu), in which the methyl group of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA, 1) was replaced by different 5-membered heterocyclic rings, were synthesized. Comparative in vitro pharmacological studies on this series of AMPA analogues were performed using receptor binding assays (IC50 values) and the electrophysiological rat cortical slice model (EC50 values). None of these compounds showed detectable affinity for the N-methyl-D-aspartic acid subtype of Glu receptors. Some of the compounds were weak inhibitors of [3H]kainic acid binding. The inhibitory effects on [3H]AMPA binding and agonist potencies at AMPA receptors of 7a-i were strictly dependent on the structure, electrostatic potential, and methyl substitution of the heterocyclic 5-substituent. Thus, while 7a (IC50 = 0.094 microM; EC50 = 2.3 microM) was approximately equipotent with AMPA (IC50 = 0.023 microM; EC50 = 5.4 microM), (RS)-2-amino-3-[3-hydroxy-5-(1H-imidazol-2-yl)isoxazol-4-yl]propio nic acid (7b) (IC50 = 48 microM; EC50 = 550 microM) was some 2 orders of magnitude weaker than AMPA, and (RS)-2-amino-3-[3-hydroxy-5-(1-methyl-1H-imidazol-2-yl)-isoxazol-4 -yl] propionic acid (7c) (IC50 > 100 microM; EC50 > 1000 microM) was inactive. Furthermore, (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (7i) (IC50 = 0.030 microM; EC50 = 0.92 microM) was more potent than AMPA, whereas its N-1 methyl isomer, (RS)-2-amino-3-[3-hydroxy-5-(1-methyl-1H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (7h) (IC50 = 54 microM; EC50 > 1000 microM) was inactive as an AMPA agonist. A quantitative structure-activity relationship (QSAR) analysis revealed a positive correlation between receptor affinity, electrostatic potential near the nitrogen atom at the "ortho" position of the heterocyclic 5-substituent, and the rotational energy barrier around the bond connecting the two rings. We envisage that a hydrogen bond between the protonated amino group and an ortho-positioned heteroatom of the ring substituent at the 5-position stabilize receptor-active conformations of these AMPA analogues.


Subject(s)
Cerebral Cortex/physiology , Corpus Callosum/physiology , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analogs & derivatives , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/chemical synthesis , Animals , Binding, Competitive , Cerebral Cortex/drug effects , Corpus Callosum/drug effects , Electrophysiology , Evoked Potentials/drug effects , In Vitro Techniques , Isoxazoles/chemistry , Kainic Acid/metabolism , Kinetics , Models, Molecular , Molecular Conformation , Molecular Structure , Potentiometry , Rats , Receptors, AMPA/drug effects , Receptors, AMPA/metabolism , Receptors, Kainic Acid/drug effects , Receptors, Kainic Acid/metabolism , Structure-Activity Relationship , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/chemistry , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
7.
J Med Chem ; 39(19): 3806-13, 1996 Sep 13.
Article in English | MEDLINE | ID: mdl-8809168

ABSTRACT

[[(4-Nitrophenyl)X]alkyl]imidazole isosteres (where X = NH, S, CH2S, O) of previously described [[(5-nitropyrid-2-yl)X]ethyl]imidazoles (where X = NH, S) have been synthesized and evaluated for H3-receptor histamine antagonism in vitro (Ki for [3H]histamine release from rat cerebral cortex synaptosomes) and in vivo (ED50 per os in mice on brain tele-methylhistamine levels). Encouraging results led to the synthesis and testing of a novel series of substituted (phenoxyethyl)- and (phenoxypropyl)imidazoles. From the latter, 4-[3-(4-cyanophenoxy)propyl]-1H-imidazole (10a, UCL 1390; Ki = 12 nM, ED50 = 0.54 mg/kg) and 4-[3-[4-(trifluoromethyl)-phenoxy]propyl]-1H-imidazole (10c, UCL 1409; Ki = 14 nM, ED50 = 0.60 mg/kg) have been selected as potential candidates for drug development. For 16 [(aryloxy)ethyl]imidazoles the relationship between in vitro and in vivo potency is described by the equation log ED50 = 0.47 log Ki + 0.20 (r = 0.78).


Subject(s)
Histamine Antagonists/chemical synthesis , Imidazoles/chemical synthesis , Receptors, Histamine H3/drug effects , Animals , Brain/drug effects , Brain/metabolism , Cerebral Cortex/metabolism , Histamine Antagonists/pharmacology , Histamine Release/drug effects , Imidazoles/pharmacology , In Vitro Techniques , Methylhistamines/metabolism , Mice , Molecular Structure , Potassium/pharmacology , Rats , Synaptosomes/metabolism
8.
J Med Chem ; 39(8): 1682-91, 1996 Apr 12.
Article in English | MEDLINE | ID: mdl-8648608

ABSTRACT

(RS)-2-Amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA, 5) and the selective AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA, 7) have been used as leads for the design and synthesis of a number of potential AMPA receptor antagonists. Two parallel series of AMOA analogs were synthesized, containing either a distal carboxylic acid (compounds 8b-g and 11b) or a phosphonic acid (compounds 9a-g, 10c, and 11c). Pharmacological characterization of the synthesized compounds was carried out using a series of receptor binding assays and by in vitro electrophysiological experiments using the rat cortical slice model. The two analogs with a tert-butyl substituent, (RS)-2-amino-3-[5-tert-butyl-3-(carboxymethoxy)-4-isoxazolyl]pr opi onic acid (ATOA, 8b) and the corresponding phosphonic acid analog ATPO (9b), were the most potent and selective AMPA antagonists within each series. ATOA and ATPO showed IC50 values of 150 and 28 microM, respectively, toward AMPA-induced depolarizations in the cortical slice model compared to IC50 = 320 microM for the parent compound, AMOA. These two new competitive AMPA antagonists were significantly more selective than AMOA, showing no antagonism (up to 1 mM) toward NMDA-induced responses, whereas AMOA (at 1mM) showed weak (19%) inhibition toward NMDA-induced responses. The structure-activity relationships for the two series of compounds revealed considerable differences with respect to the substituents effects, and the phosphonic acid analogs generally exhibited significantly higher potencies compared to the carboxylic acid analogs.


Subject(s)
Isoxazoles/chemical synthesis , Receptors, AMPA/antagonists & inhibitors , Animals , In Vitro Techniques , Isoxazoles/pharmacology , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...