Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 364(1523): 1607-16, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19414474

ABSTRACT

Using two genetic approaches and seven different plant systems, we present findings from a meta-analysis examining the strength of the effects of plant genetic introgression and genotypic diversity across individual, community and ecosystem levels with the goal of synthesizing the patterns to date. We found that (i) the strength of plant genetic effects can be quite high; however, the overall strength of genetic effects on most response variables declined as the levels of organization increased. (ii) Plant genetic effects varied such that introgression had a greater impact on individual phenotypes than extended effects on arthropods or microbes/fungi. By contrast, the greatest effects of genotypic diversity were on arthropods. (iii) Plant genetic effects were greater on above-ground versus below-ground processes, but there was no difference between terrestrial and aquatic environments. (iv) The strength of the effects of intraspecific genotypic diversity tended to be weaker than interspecific genetic introgression. (v) Although genetic effects generally decline across levels of organization, in some cases they do not, suggesting that specific organisms and/or processes may respond more than others to underlying genetic variation. Because patterns in the overall impacts of introgression and genotypic diversity were generally consistent across diverse study systems and consistent with theoretical expectations, these results provide generality for understanding the extended consequences of plant genetic variation across levels of organization, with evolutionary implications.


Subject(s)
Arthropods/genetics , Ecosystem , Genetic Variation , Genetics, Population , Models, Genetic , Plants/genetics , Animals , Arthropods/growth & development , Plant Development
2.
Nat Rev Genet ; 7(7): 510-23, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16778835

ABSTRACT

Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.


Subject(s)
Ecosystem , Genetics, Population , Animals , Humans , Plants/genetics
3.
Evolution ; 59(1): 61-9, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15792227

ABSTRACT

To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod community. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids (collectively referred to as four different cross types). We did not find overall significant differences in arthropod species richness or abundance among cottonwood cross types. We found significant differences in arthropod community composition among all cross types except backcross and narrowleaf cottonwoods. Thus, even though we found similar richness among cross types, the species that composed the community were significantly different. Using vector analysis, we found that the shift in arthropod community composition was correlated with percent Fremont alleles in the host plant, which suggests that the arthropod community responds to the underlying genetic differences among trees. We found 13 arthropod species representing different trophic levels that were significant indicators of the four different cross types. Even though arthropod communities changed in species composition from one year to the next, the overall patterns of community differences remained remarkably stable, suggesting that the genetic differences among cross types exert a strong organizing influence on the arthropod community. Together, these results support the extended phenotype concept. Few studies have observationally and experimentally shown that entire arthropod communities can be structured by genetic differences in their host plants. These findings contribute to the developing field of community genetics and suggest a strategy for conserving arthropod diversity by promoting genetic diversity in their host plants.


Subject(s)
Arthropods/physiology , Genetic Variation , Populus/genetics , Animals , Hybridization, Genetic , Population Density
4.
Evolution ; 58(9): 2100-2, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15521465

ABSTRACT

Understanding the genetic basis to landscape vegetation structure is an important step that will allow us to examine ecological and evolutionary processes at multiple spatial scales. Here for the first time we show that the fractal architecture of a dominant plant on the landscape exhibits high broad-sense heritability and thus has a genetic basis. The fractal architecture of trees is known to influence ecological communities associated with them. In a unidirectional cottonwood-hybridizing complex (Populus angustifolia x P. fremontii) pure and hybrid cottonwoods differed significantly in their fractal architecture, with phenotypic variance among backcross hybrids exceeding that of F1 hybrids and of pure narrowleaf cottonwoods by two-fold. This result provides a crucial link between genes and fractal scaling theory, and places the study of landscape ecology within an evolutionary framework.


Subject(s)
Biological Evolution , Fractals , Hybridization, Genetic , Phenotype , Populus/anatomy & histology , Populus/genetics , Analysis of Variance , Ecosystem , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...