Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
mSphere ; 7(4): e0012222, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35727016

ABSTRACT

African trypanosomes evade the immune system of the mammalian host by the antigenic variation of the predominant glycosylphosphatidylinositol (GPI)-anchored surface protein, variant surface glycoprotein (VSG). VSG is a very stable protein that is turned over from the cell surface with a long half-life (~26 h), allowing newly synthesized VSG to populate the surface. We have recently demonstrated that VSG turnover under normal growth is mediated by a combination of GPI hydrolysis and direct shedding with intact GPI anchors. VSG synthesis is tightly regulated in dividing trypanosomes, and when subjected to RNA interference (RNAi) silencing, cells display rapid cell cycle arrest in order to conserve VSG density on the cell surface (K. Sheader, S. Vaughan, J. Minchin, K. Hughes, et al., Proc Natl Acad Sci U S A 102:8716-8721, 2005, https://doi.org/10.1073/pnas.0501886102). Arrested cells also display an altered morphology of secretory organelles-engorgement of the trans-Golgi cisternae-that may reflect a disruption of post-Golgi secretory transport. We now ask whether trypanosomes under VSG silencing also reduce the rate of VSG turnover to further conserve coat density. Our data indicate that trypanosomes do not regulate VSG turnover according to VSG protein abundance, nor was there any effect on the post-Golgi transport of soluble or GPI-anchored secretory cargo. However, the surface morphology of silenced cells was altered from a typically rugose topology to a smoother profile, consistent with reduced overall membrane trafficking to the cell surface. IMPORTANCE African trypanosomes evade the host immune system by altering the expression of variant surface glycoproteins (VSGs) in a process called antigenic variation. VSG is essential, and when its synthesis is ablated by RNAi silencing, cells enter precytokinesis growth arrest as a means to maintain constant cell surface VSG levels. We have investigated whether arrested cells also alter the rate of natural VSG turnover as a means to conserve the surface coat. This work provides insights into the natural biology of the glycocalyx of this important human and veterinary parasite.


Subject(s)
Trypanosoma brucei brucei , Animals , Antigenic Variation , Glycosylphosphatidylinositols , Humans , Mammals , Membrane Glycoproteins/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
2.
mSphere ; 7(4): e0018822, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35727050

ABSTRACT

A hallmark of eukaryotic cells is the ability to form a secretory pathway connecting many intracellular compartments. In the early secretory pathway, coated protein complex II (COPII)-coated vesicles mediate the anterograde transport of newly synthesized secretory cargo from the endoplasmic reticulum to the Golgi apparatus. The COPII coat complex is comprised of an inner layer of Sec23/Sec24 heterodimers and an outer layer of Sec13/Sec31 heterotetramers. In African trypanosomes, there are two paralogues each of Sec23 and Sec24, that form obligate heterodimers (TbSec23.2/TbSec24.1, TbSec23.1/TbSec24.2). It is not known if these form distinct homotypic classes of vesicles or one heterotypic class, but it is known that TbSec23.2/TbSec24.1 specifically mediate forward trafficking of GPI-anchored proteins (GPI-APs) in bloodstream-form trypanosomes (BSF). Here, we showed that this selectivity was lost in insect procyclic stage parasites (PCF). All isoforms of TbSec23 and TbSec24 are essential in PCF parasites as judged by RNAi knockdowns. RNAi silencing of each subunit had equivalent effects on the trafficking of GPI-APs and p67, a transmembrane lysosomal protein. However, silencing of the TbSec23.2/TbSec24.1 had heterodimer had a significant impact on COPII mediated trafficking of soluble TbCatL from the ER to the lysosome. This finding suggests a model in which selectivity of COPII transport was altered between the BSF and PCF trypanosomes, possibly as an adaptation to a digenetic life cycle. IMPORTANCE African trypanosomes synthesize dense surface coats composed of stage-specific glycosylphosphatidylinositol lipid anchored proteins. We previously defined specific machinery in bloodstream stage parasites that mediate the exit of these proteins from the endoplasmic reticulum. Here, we performed similar analyses in the procyclic insect stage and found significant differences in this process. These findings contribute to our understanding of secretory processes in this unusual eukaryotic model system.


Subject(s)
COP-Coated Vesicles , Trypanosoma , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Trypanosoma/metabolism
3.
Mol Biochem Parasitol ; 245: 111409, 2021 09.
Article in English | MEDLINE | ID: mdl-34363902

ABSTRACT

Glycosylphosphatidylinositol-phospholipase C (GPI-PLC) is an enzyme that has been implicated in GPI-dependent protein trafficking and phosphoinositide metabolism in the bloodstream stage of African trypanosomes. However, despite the fact that it is associated with the cytoplasmic face of internal organellar compartments, its role in general membrane trafficking has not been investigated. Using a GPI-PLC null cell line, we determine the effect of GPI-PLC deficiency on these processes. Biosynthetic trafficking of lysosomal cargo, soluble cathepsin L and membrane bound p67, are unaffected. Likewise, secretory transport, recycling and ultimate lysosomal turnover of the GPI-anchored and transmembrane glycoproteins, transferrin receptor and invariant surface glycoprotein 65, respectively, were unaffected. A significant decrease in the endocytic uptake of transferrin was observed, confirming a prior report, but ultimate delivery to the lysosome was unimpacted. These results contribute to our understanding of the roles of this enigmatic enzyme in trypanosome cell biology.


Subject(s)
Trypanosoma brucei brucei , Glycosylphosphatidylinositols/metabolism , Lysosomes/metabolism , Protein Transport , Trypanosoma brucei brucei/metabolism , Type C Phospholipases/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
4.
mBio ; 12(4): e0172521, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34311578

ABSTRACT

African trypanosomes utilize glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) to evade the host immune system. VSG turnover is thought to be mediated via cleavage of the GPI anchor by endogenous GPI-specific phospholipase C (GPI-PLC). However, GPI-PLC is topologically sequestered from VSG substrates in intact cells. Recently, A. J. Szempruch, S. E. Sykes, R. Kieft, L. Dennison, et al. (Cell 164:246-257, 2016, https://doi.org/10.1016/j.cell.2015.11.051) demonstrated the release of nanotubes that septate to form free VSG+ extracellular vesicles (EVs). Here, we evaluated the relative contributions of GPI hydrolysis and EV formation to VSG turnover in wild-type (WT) and GPI-PLC null cells. The turnover rate of VSG was consistent with prior measurements (half-life [t1/2] of ∼26 h) but dropped significantly in the absence of GPI-PLC (t1/2 of ∼36 h). Ectopic complementation restored normal turnover rates, confirming the role of GPI-PLC in turnover. However, physical characterization of shed VSG in WT cells indicated that at least 50% is released directly from cell membranes with intact GPI anchors. Shedding of EVs plays an insignificant role in total VSG turnover in both WT and null cells. In additional studies, GPI-PLC was found to have no role in biosynthetic and endocytic trafficking to the lysosome but did influence the rate of receptor-mediated endocytosis. These results indicate that VSG turnover is a bimodal process involving both direct shedding and GPI hydrolysis. IMPORTANCE African trypanosomes, the protozoan agent of human African trypanosomaisis, avoid the host immune system by switching expression of the variant surface glycoprotein (VSG). VSG is a long-lived protein that has long been thought to be turned over by hydrolysis of its glycolipid membrane anchor. Recent work demonstrating the shedding of VSG-containing extracellular vesicles has led us to reinvestigate the mode of VSG turnover. We found that VSG is shed in part by glycolipid hydrolysis but also in approximately equal part by direct shedding of protein with intact lipid anchors. Shedding of exocytic vesicles made a very minor contribution to overall VSG turnover. These results indicate that VSG turnover is a bimodal process and significantly alter our understanding of the "life cycle" of this critical virulence factor.


Subject(s)
Antigens, Protozoan/immunology , Life Cycle Stages , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/physiology , Antigens, Protozoan/genetics , Cell Line , Endocytosis , Protozoan Proteins/genetics , Trypanosoma brucei brucei/chemistry , Trypanosoma brucei brucei/genetics
5.
Traffic ; 22(8): 274-283, 2021 08.
Article in English | MEDLINE | ID: mdl-34101314

ABSTRACT

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.


Subject(s)
Trypanosoma brucei brucei , Variant Surface Glycoproteins, Trypanosoma , Cell Membrane , Glycosylphosphatidylinositols , Membrane Glycoproteins , Variant Surface Glycoproteins, Trypanosoma/genetics
6.
Parasitology ; 148(10): 1271-1276, 2021 09.
Article in English | MEDLINE | ID: mdl-33070788

ABSTRACT

p67 is a type I transmembrane glycoprotein of the terminal lysosome of African trypanosomes. Its biosynthesis involves transport of an initial gp100 ER precursor to the lysosome, followed by cleavage to N-terminal (gp32) and C-terminal (gp42) subunits that remain non-covalently associated. p67 knockdown is lethal, but the only overt phenotype is an enlarged lysosome (~250 to >1000 nm). Orthologues have been characterized in Dictyostelium and mammals. These have processing pathways similar to p67, and are thought to have phospholipase B-like (PLBL) activity. The mouse PLBD2 crystal structure revealed that the PLBLs represent a subgroup of the larger N-terminal nucleophile (NTN) superfamily, all of which are hydrolases. NTNs activate by internal autocleavage mediated by a nucleophilic residue, i.e. Cys, Ser or Thr, on the upstream peptide bond to form N-terminal α (gp32) and C-terminal ß (gp42) subunits that remain non-covalently associated. The N-terminal residue of the ß subunit is then catalytic in subsequent hydrolysis reactions. All PLBLs have a conserved Cys/Ser dipeptide at the α/ß junction (Cys241/Ser242 in p67), mutation of which renders p67 non-functional in RNAi rescue assays. p67 orthologues are found in many clades of parasitic protozoa, thus p67 is the founding member of a group of hydrolases that likely play a role broadly in the pathogenesis of parasitic infections.


Subject(s)
Hydrolases/genetics , Protozoan Proteins/genetics , Trypanosoma brucei brucei/genetics , Hydrolases/metabolism , Lysosomes/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/enzymology
7.
Mol Biochem Parasitol ; 239: 111313, 2020 09.
Article in English | MEDLINE | ID: mdl-32735998

ABSTRACT

Misfolded proteins trapped in the endoplasmic reticulum (ER) are specifically recognized and retrotranslocated to the cytosol by the ER-Associated Degradation (ERAD) system and delivered to the proteasome for destruction. This process was recently described in Trypanosoma brucei (T. brucei) using the misfolded epitope tagged Transferrin Receptor subunits ESAG7:Ty and HA:ESAG6 (HA:E6). Critical to this work was the proteasomal inhibitor MG132. However, MG132 has off-target inhibitory effects on lysosomal Cathepsin L that could cause misinterpretation of turnover results. Here, we evaluate an orally bioavailable p97 inhibitor, CB-5083, for use in T. brucei. p97 is a ubiquitous protein involved in many cellular events including the membrane extraction step of ERAD. CB-5083 strongly inhibits turnover of HA:E6, with comparable protein recovery to MG132 treatment. Interestingly, little deglycosylated cytoplasmic species accumulates, though it normally emerges with MG132 treatment. This suggests that CB-5083 blocks ERAD upstream of the proteasome, as expected for inhibition of the trypanosomal p97 orthologue TbVCP. Under CB-5083 treatment, HA:E6 is also strongly membrane-associated, suggesting ER localization. Finally, we provide an experimental example where CB-5083 treatment offers clarity to the off-target effects of MG132 treatment.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Indoles/pharmacology , Leupeptins/pharmacology , Pyrimidines/pharmacology , Trypanosoma brucei brucei , Adenosine Triphosphatases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/drug effects , Endoplasmic Reticulum-Associated Degradation/physiology , Nuclear Proteins/antagonists & inhibitors , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Protein Folding , Protein Transport , Proteolysis/drug effects , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism
8.
Cell Microbiol ; 22(11): e13244, 2020 11.
Article in English | MEDLINE | ID: mdl-32618070

ABSTRACT

The Endosomal Sorting Complex Required for Transport machinery consists of four protein complexes (ESCRT 0-IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I-III and Vps4. Trypanosomes also have an ubiquitinylated invariant surface glycoprotein (ISG65) that is delivered to the lysosome by ESCRT, however, we previously implicated TbVps4 in rescue and recycling of ISG65. Here we use conditional silencing to investigate the role of TbVps24, a phosphoinositide-binding ESCRT III component, on protein trafficking. TbVps24 localises to the TbRab7+ late endosome, and binds PI(3,5)P2 , the product of the TbFab1 kinase, both of which also localise to late endosomes. TbVps24 silencing is lethal, and negatively affects biosynthetic trafficking of the lysosomal markers p67 and TbCathepsin L. However, the major phenotype of silencing is accelerated degradation and depletion of the surface pool of ISG65. Thus, TbVps24 silencing phenocopies that of TbVps4 in regard to ISG65 trafficking. This presents a paradox since we have previously found that depletion of TbFab1 completely blocks ISG65 turnover. We propose a model in which late ESCRT components operate at two sites, one PI(3,5)P2 -dependent (degradation) and one PI(3,5)P2 -independent (recycling), to regulate ISG65 homeostasis.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Glycoproteins/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , Cell Line , Endocytosis , Endosomes/metabolism , Homeostasis , Lysosomes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Transport , Protozoan Proteins/genetics , Trypanosoma brucei brucei/growth & development , Variant Surface Glycoproteins, Trypanosoma/metabolism
9.
J Biol Chem ; 295(8): 2227-2238, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31932305

ABSTRACT

The transferrin receptor (TfR) of the bloodstream form (BSF) of Trypanosoma brucei is a heterodimer comprising glycosylphosphatidylinositol (GPI)-anchored expression site-associated gene 6 (ESAG6 or E6) and soluble ESAG7. Mature E6 has five N-glycans, consisting of three oligomannose and two unprocessed paucimannose structures. Its GPI anchor is modified by the addition of 4-6 α-galactose residues. TfR binds tomato lectin (TL), specific for N-acetyllactosamine (LacNAc) repeats, and previous studies have shown transport-dependent increases in E6 size consistent with post-glycan processing in the endoplasmic reticulum. Using pulse-chase radiolabeling, peptide-N-glycosidase F treatment, lectin pulldowns, and exoglycosidase treatment, we have now investigated TfR N-glycan and GPI processing. E6 increased ∼5 kDa during maturation, becoming reactive with both TL and Erythrina cristagalli lectin (ECL, terminal LacNAc), indicating synthesis of poly-LacNAc on paucimannose N-glycans. This processing was lost after exoglycosidase treatment and after RNAi-based silencing of TbSTT3A, the oligosaccharyltransferase that transfers paucimannose structures to nascent secretory polypeptides. These results contradict previous structural studies. Minor GPI processing was also observed, consistent with α-galactose addition. However, increasing the spacing between E6 protein and the GPI ω-site (aa 4-7) resulted in extensive post-translational processing of the GPI anchor to a form that was TL/ECL-reactive, suggesting the addition of LacNAc structures, confirmed by identical assays with BiPNHP, a non-N-glycosylated GPI-anchored reporter. We conclude that BSF trypanosomes can modify GPIs by generating structures reminiscent of those present in insect-stage trypanosomes and that steric constraints, not stage-specific expression of glycosyltransferases, regulate GPI processing.


Subject(s)
Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/metabolism , Trypanosoma brucei brucei/metabolism , Glycosides/metabolism , Glycosylation , Lectins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Protozoan Proteins/metabolism , Receptors, Transferrin/metabolism , Substrate Specificity
10.
Cell Microbiol ; 21(4): e12980, 2019 04.
Article in English | MEDLINE | ID: mdl-30427109

ABSTRACT

Cathepsin L (TbCatL) is an essential lysosomal thiol protease in African trypanosomes. TbCatL is synthesized as two precursor forms (P/X) that are activated to mature form (M) with the removal of the prodomain upon arrival in the lysosome. We examine TbCatL trafficking in a novel system: truncated TbCatL reporter without the C-terminal domain (CTD; TbCatL∆) ectopically expressed in an RNA interference (RNAi) cell line targeting the CTD/3' untranslated region (UTR) of endogenous mRNA. TbCatL∆ is synthesized as P'/X'/M' species, localizes to the lysosome, and rescues the lethal TbCatL RNAi phenotype. Inactive TbCatLΔ:C150A is only processed to M' in the presence of endogenous TbCatL indicating trans-auto-catalytic activation. X' is formed with active endoplasmic reticulum (ER)-retained TbCatLΔ:MDDL, but not with TbCatLΔ:C150A, indicating stochastic generation in the ER by cis-auto-cleavage within the prodomain of newly synthesized P'. Modelling the TbCatL prodomain on the human CatL structure suggests three solvent accessible features that could contain post-Golgi targeting signals: the N-terminus, the helix 1/turn 1 junction, and a separate turn (T3). We demonstrate that the critical motif for lysosomal targeting is an asparagine-proline dipeptide in T3 that is strictly conserved in all Kinetoplastida. These findings show novel insights on the maturation of TbCatL, which is a critical virulence factor in mammalian infection.


Subject(s)
Cathepsin L/metabolism , Lysosomes/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , 3' Untranslated Regions/genetics , 3' Untranslated Regions/physiology , Endoplasmic Reticulum/metabolism , Protein Transport , RNA, Messenger/metabolism
11.
Bioessays ; 40(12): e1800181, 2018 12.
Article in English | MEDLINE | ID: mdl-30370931

ABSTRACT

The process of antigenic variation in parasitic African trypanosomes is a remarkable mechanism for outwitting the immune system of the mammalian host, but it requires a delicate balancing act for the monoallelic expression, folding and transport of a single variant surface glycoprotein (VSG). Only one of hundreds of VSG genes is expressed at time, and this from just one of ≈15 dedicated expression sites. By switching expression of VSGs the parasite presents a continuously shifting antigenic facade leading to prolonged chronic infections lasting months to years. The basics of VSG structure and switching have been known for several decades, but recent studies have brought higher resolution to many aspects this process. New VSG structures, in silico modeling of infections, studies of VSG codon usage, and experimental ablation of VSG expression provide insights that inform how this remarkable system may have evolved.


Subject(s)
Antigenic Variation , Membrane Glycoproteins/chemistry , Trypanosoma/immunology , Africa , Gene Expression Regulation , Membrane Glycoproteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma/genetics
12.
Mol Biol Cell ; 29(20): 2397-2409, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30091673

ABSTRACT

Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor. HA:E6 is N-glycosylated and GPI-anchored and accumulates in the ER as aggregates. Treatment with MG132, a proteasome inhibitor, generates a smaller protected polypeptide (HA:E6*), consistent with turnover in the proteasome. HA:E6* partitions between membrane and cytosol fractions, and both pools are proteinase K-sensitive, indicating cytosolic disposition of membrane-associated HA:E6*. HA:E6* is de-N-glycosylated and has a full GPI-glycan structure from which dimyristoylglycerol has been removed, indicating that complete GPI removal is not a prerequisite for proteasomal degradation. However, HA:E6* is apparently not ubiquitin-modified. The trypanosome GPI anchor is a forward trafficking signal; thus the dynamic tension between ERQC and ER exit favors degradation by ERAD. These results differ markedly from the standard eukaryotic model systems and may indicate an evolutionary advantage related to pathogenesis.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Glycosylphosphatidylinositols/metabolism , Protein Folding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , Gene Silencing , Genes, Reporter , Leupeptins/pharmacology , Models, Biological , Proteolysis/drug effects , RNA Interference , Receptors, Transferrin/metabolism
13.
Traffic ; 19(6): 406-420, 2018 06.
Article in English | MEDLINE | ID: mdl-29582527

ABSTRACT

Trypanosoma brucei possesses a streamlined secretory system that guarantees efficient delivery to the cell surface of the critical glycosyl-phosphatidylinositol (GPI)-anchored virulence factors, variant surface glycoprotein (VSG) and transferrin receptor (TfR). Both are thought to be constitutively endocytosed and returned to the flagellar pocket via TbRab11+ recycling endosomes. We use conditional knockdown with established reporters to investigate the role of TbRab11 in specific endomembrane trafficking pathways in bloodstream trypanosomes. TbRab11 is essential. Ablation has a modest negative effect on general endocytosis, but does not affect turnover, steady state levels or surface localization of TfR. Nor are biosynthetic delivery to the cell surface and recycling of VSG affected. TbRab11 depletion also causes increased shedding of VSG into the media by formation of nanotubes and extracellular vesicles. In contrast to GPI-anchored cargo, TbRab11 depletion reduces recycling of the transmembrane invariant surface protein, ISG65, leading to increased lysosomal turnover. Thus, TbRab11 plays a critical role in recycling of transmembrane, but not GPI-anchored surface proteins. We proposed a two-step model for VSG turnover involving release of VSG-containing vesicles followed by GPI hydrolysis. Collectively, our results indicate a critical role of TbRab11 in the homeostatic maintenance of the secretory/endocytic system of bloodstream T. brucei.


Subject(s)
Endocytosis/physiology , Protein Transport/physiology , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , rab GTP-Binding Proteins/metabolism , Endosomes/metabolism , Glycosylphosphatidylinositols/metabolism
14.
mSphere ; 2(4)2017.
Article in English | MEDLINE | ID: mdl-28713858

ABSTRACT

The critical virulence factor of bloodstream-form Trypanosoma brucei is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.1). In other systems, p24 transmembrane adaptor proteins selectively recruit GPI-anchored cargo into nascent COPII vesicles. Trypanosomes have eight putative p24s (TbERP1 to TbERP8) that are constitutively expressed at the mRNA level. However, only four TbERP proteins (TbERP1, -2, -3, and -8) are detectable in bloodstream-form parasites. All four colocalize to ER exit sites, are required for efficient GPI-dependent ER exit, and are interdependent for steady-state stability. These results suggest shared function as an oligomeric ER GPI-cargo receptor. This cohort also mediates rapid forward trafficking of the soluble lysosomal hydrolase TbCatL. Procyclic insect-stage trypanosomes have a distinct surface protein, procyclin, bearing a different GPI anchor structure. A separate cohort of TbERP proteins (TbERP1, -2, -4, and -8) are expressed in procyclic parasites and also function in GPI-dependent ER exit. Collectively, these results suggest developmentally regulated TbERP cohorts, likely in obligate assemblies, that may recognize stage-specific GPI anchors to facilitate GPI-cargo trafficking throughout the parasite life cycle. IMPORTANCE African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for GPI recognition and loading in coated cargo vesicles leaving the ER. Here, we characterize a family of small transmembrane proteins that act at adaptors for this process. This work adds to our understanding of general GPI function in eukaryotic cells and specifically in the synthesis and transport of the critical virulence factor of pathogenic African trypanosomes.

15.
PLoS Pathog ; 13(5): e1006366, 2017 May.
Article in English | MEDLINE | ID: mdl-28459879

ABSTRACT

Bloodstream-form African trypanosomes encode two structurally related glycosylphosphatidylinositol (GPI)-anchored proteins that are critical virulence factors, variant surface glycoprotein (VSG) for antigenic variation and transferrin receptor (TfR) for iron acquisition. Both are transcribed from the active telomeric expression site. VSG is a GPI2 homodimer; TfR is a GPI1 heterodimer of GPI-anchored ESAG6 and ESAG7. GPI-valence correlates with secretory progression and fate in bloodstream trypanosomes: VSG (GPI2) is a surface protein; truncated VSG (GPI0) is degraded in the lysosome; and native TfR (GPI1) localizes in the flagellar pocket. Tf:Fe starvation results in up-regulation and redistribution of TfR to the plasma membrane suggesting a saturable mechanism for flagellar pocket retention. However, because such surface TfR is non-functional for ligand binding we proposed that it represents GPI2 ESAG6 homodimers that are unable to bind transferrin-thereby mimicking native VSG. We now exploit a novel RNAi system for simultaneous lethal silencing of all native TfR subunits and exclusive in-situ expression of RNAi-resistant TfR variants with valences of GPI0-2. Our results conform to the valence model: GPI0 ESAG7 homodimers traffick to the lysosome and GPI2 ESAG6 homodimers to the cell surface. However, when expressed alone ESAG6 is up-regulated ~7-fold, leaving the issue of saturable retention in the flagellar pocket in question. Therefore, we created an RNAi-resistant GPI2 TfR heterodimer by fusing the C-terminal domain of ESAG6 to ESAG7. Co-expression with ESAG6 generates a functional heterodimeric GPI2 TfR that restores Tf uptake and cell viability, and localizes to the cell surface, without overexpression. These results resolve the longstanding issue of TfR trafficking under over-expression and confirm GPI valence as a critical determinant of intracellular sorting in trypanosomes.


Subject(s)
Glycosylphosphatidylinositols/metabolism , Protein Transport , Receptors, Transferrin/metabolism , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cell Membrane/metabolism , Dimerization , Glycosylphosphatidylinositols/genetics , Humans , Lysosomes/metabolism , RNA Interference , Receptors, Transferrin/genetics , Sequence Alignment , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/ultrastructure , Up-Regulation , Variant Surface Glycoproteins, Trypanosoma/genetics
16.
Mol Biochem Parasitol ; 214: 52-61, 2017 06.
Article in English | MEDLINE | ID: mdl-28356223

ABSTRACT

Protein trafficking through endo/lysosomal compartments is critically important to the biology of the protozoan parasite Trypanosoma brucei, but the routes material may take to the lysosome, as well as the molecular factors regulating those routes, remain incompletely understood. Phosphoinositides are signaling phospholipids that regulate many trafficking events by recruiting specific effector proteins to discrete membrane subdomains. In this study, we investigate the role of one phosphoinositide, PI(3,5)P2 in T. brucei. We find a low steady state level of PI(3,5)P2 in bloodstream form parasites comparable to that of other organisms. RNAi knockdown of the putative PI(3)P-5 kinase TbFab1 decreases the PI(3,5)P2 pool leading to rapid cell death. TbFab1 and PI(3,5)P2 both localize strongly to late endo/lysosomes. While most trafficking functions were intact in TbFab1 deficient cells, including both endocytic and biosynthetic trafficking to the lysosome, lysosomal turnover of an endogenous ubiquitinylated membrane protein, ISG65, was completely blocked suggesting that TbFab1 plays a role in the ESCRT-mediated late endosomal/multivesicular body degradative pathways. Knockdown of a second component of PI(3,5)P2 metabolism, the PI(3,5)P2 phosphatase TbFig4, also resulted in delayed turnover of ISG65. Together, these results demonstrate an essential role for PI(3,5)P2 in the turnover of ubiquitinylated membrane proteins and in trypanosome endomembrane biology.


Subject(s)
Endosomes/enzymology , Lysosomes/enzymology , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Trypanosoma brucei brucei/enzymology , Endosomes/metabolism , Lysosomes/metabolism , Protein Transport , Trypanosoma brucei brucei/metabolism
17.
Proc Natl Acad Sci U S A ; 113(25): 6961-6, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27185908

ABSTRACT

Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse's midgut. One critical factor influencing this bottleneck is the fly's peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse's gut, VSG molecules released from trypanosomes are internalized by cells of the cardia-the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology-that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse's vector competence and disease transmission.


Subject(s)
Membrane Glycoproteins , Tsetse Flies/immunology , Africa South of the Sahara , Animals , Humans , Mammals/immunology , Trypanosoma brucei brucei/genetics , Trypanosomiasis , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics
18.
Cell Microbiol ; 18(11): 1673-1688, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27110662

ABSTRACT

Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ). We now reinvestigate VSG turnover and find no evidence for rapid degradation, consistent with a model whereby VSG synthesis is precisely regulated to match requirements for a functional surface coat on each daughter cell. However, using a mutated version of the ESAG7 subunit of the transferrin receptor (E7:Ty) we confirm functional ERAD in trypanosomes. E7:Ty fails to assemble into transferrin receptors and accumulates in the ER, consistent with retention of misfolded protein, and its turnover is selectively rescued by the proteasomal inhibitor MG132. We also show that ER accumulation of E7:Ty does not induce an unfolded protein response. These data, along with the presence of ERAD orthologues in the Trypanosoma brucei genome, confirm ERAD in trypanosomes. We discuss scenarios in which ERAD could be critical to bloodstream parasites, and how these may have contributed to the evolution of antigenic variation in trypanosomes.


Subject(s)
Antigens, Protozoan/metabolism , Endoplasmic Reticulum-Associated Degradation , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism , Protein Folding , Protein Stability , Proteolysis
19.
Eukaryot Cell ; 14(11): 1094-101, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26318397

ABSTRACT

The unfolded protein response (UPR) is a stress mechanism to cope with misfolded proteins in the early secretory pathway, the hallmark being transcriptional upregulation of endoplasmic reticulum (ER) molecular chaperones such as BiP and protein disulfide isomerase. Despite the lack of transcriptional regulation and the absence of the classical UPR machinery, African trypanosomes apparently respond to persistent ER stress by a UPR-like response, including upregulation of BiP, and a related spliced leader silencing (SLS) response whereby SL RNA transcription is shut down. Initially observed by knockdown of the secretory protein translocation machinery, both responses are also induced by chemical agents known to elicit UPR in mammalian cells (H. Goldshmidt, D. Matas, A. Kabi, A. Carmi, R. Hope, S. Michaeli, PLoS Pathog 6:e1000731, 2010, http://dx.doi.org/10.1371/journal.ppat.1000731). As these findings were generated primarily in procyclic-stage trypanosomes, we have investigated both responses in pathogenic bloodstream-stage parasites. RNA interference (RNAi) silencing of the core translocon subunit Trypanosoma brucei Sec61α (TbSec61α) failed to induce either response. Interestingly, cell growth halted within 16 h of silencing, but sufficient TbSec61α remained to allow full competence for translocation of nascent secretory proteins for up to 24 h, indicating that replication is finely coupled with the capacity to synthesize and transport secretory cargo. Tunicamycin and thapsigargin at concentrations compatible with short-term (4 h) and long-term (24 h) viability also failed to induce any of the indicators of UPR-like or SLS responses. Dithiothreitol (DTT) was lethal at all concentrations tested. These results indicate that UPR-like and SLS responses to persistent ER stress do not occur in bloodstream-stage trypanosomes.


Subject(s)
Trypanosoma brucei brucei/metabolism , Unfolded Protein Response , Life Cycle Stages , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , SEC Translocation Channels , Trypanosoma brucei brucei/growth & development
20.
Traffic ; 14(10): 1078-90, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23905922

ABSTRACT

The multivesicular body (MVB) is a specialized Rab7+ late endosome (LE) containing multiple intralumenal vesicles that function in targeting ubiquitinylated cell surface proteins to the lysosome for degradation. African trypanosomes lack a morphologically well-defined MVB, but contain orthologs of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery that mediates MVB formation. We investigate the role of TbVps23, an early ESCRT component, and TbVps4, the terminal ESCRT ATPase, in lysosomal trafficking in bloodstream form trypanosomes. Both localize to the TbRab7+ LE and RNAi silencing of each rapidly blocks growth. TbVps4 silencing results in approximately threefold accumulation of TbVps23 at the LE, consistent with blocking terminal ESCRT disassembly. Trafficking of endocytic and biosynthetic cargo, but not default lysosomal reporters, is also negatively affected. Others reported that TbVps23 mediates ubiquitin-dependent lysosomal degradation of invariant surface glycoproteins (ISG65) (Leung et al., Traffic 2008;9:1698-1716). In contrast, we find that TbVps23 ablation does not affect ISG65 turnover, while TbVps4 silencing markedly enhances lysosomal degradation. We propose several models to accommodate these results, including that the ESCRT machinery actually retrieves ISG65 from the LE to earlier endocytic compartments, and in its absence ISG65 traffics more efficiently to the lysosome. Overall, these results confirm that the ESCRT machinery is essential in Trypanosoma brucei and plays important and novel role(s) in LE function in trypanosomes.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Trypanosoma brucei brucei/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Multivesicular Bodies/metabolism , Protein Transport , Transport Vesicles/metabolism , Trypanosoma brucei brucei/physiology , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...