Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 58(9): 5799-5806, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31012574

ABSTRACT

A new ternary selenide, Na2Mn3Se4, was prepared by a stoichiometric reaction between Na2Se4 and metallic Mn at 923 K. Crystal structure determination revealed a new structure type, built of alternating layers of Na+ ions and [Mn3Se4]2- anionic slabs. Band structure calculations indicate that Na2Mn3Se4 is an indirect band gap semiconductor with Eg = 1.59 eV, although a direct band gap is only marginally larger, at 1.64 eV. The material shows antiferromagnetic (AFM) ordering at 27 K, while the Weiss constant of ∼-400 K suggests much stronger nearest-neighbor AFM exchange between the Mn sites. This discrepancy is attributed to the strong spin frustration caused by a triangulated arrangement of the Mn sites in the [Mn3Se4]2- layer. The magnetic frustration leads to the stabilization of a complex AFM ordered structure with non-collinear arrangement of the Mn magnetic moments, as established from neutron diffraction data.

2.
Nat Commun ; 2: 396, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21772267

ABSTRACT

When charge carriers are spatially confined to one dimension, conventional Fermi-liquid theory breaks down. In such Tomonaga-Luttinger liquids, quasiparticles are replaced by distinct collective excitations of spin and charge that propagate independently with different velocities. Although evidence for spin-charge separation exists, no bulk low-energy probe has yet been able to distinguish successfully between Tomonaga-Luttinger and Fermi-liquid physics. Here we show experimentally that the ratio of the thermal and electrical Hall conductivities in the metallic phase of quasi-one-dimensional Li(0.9)Mo(6)O(17) diverges with decreasing temperature, reaching a value five orders of magnitude larger than that found in conventional metals. Both the temperature dependence and magnitude of this ratio are consistent with Tomonaga-Luttinger liquid theory. Such a dramatic manifestation of spin-charge separation in a bulk three-dimensional solid offers a unique opportunity to explore how the fermionic quasiparticle picture recovers, and over what time scale, when coupling to a second or third dimension is restored.


Subject(s)
Electric Conductivity , Lithium Compounds/chemistry , Molybdenum/chemistry , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...