Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 82(7): 1423-1434, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35131872

ABSTRACT

Ovarian cancer is the deadliest gynecologic cancer, and novel therapeutic options are crucial to improve overall survival. Here we provide evidence that impairment of oxidative phosphorylation (OXPHOS) can help control ovarian cancer progression, and this benefit correlates with expression of the two mitochondrial master regulators PGC1α and PGC1ß. In orthotopic patient-derived ovarian cancer xenografts (OC-PDX), concomitant high expression of PGC1α and PGC1ß (PGC1α/ß) fostered a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced tricarboxylic acid cycling, and elevated cellular respiration that ultimately conferred vulnerability to OXPHOS inhibition. Treatment with the respiratory chain complex I inhibitor IACS-010759 caused mitochondrial swelling and ATP depletion that consequently delayed malignant progression and prolonged the lifespan of high PGC1α/ß-expressing OC-PDX-bearing mice. Conversely, low PGC1α/ß OC-PDXs were not affected by IACS-010759, thus pinpointing a selective antitumor effect of OXPHOS inhibition. The clinical relevance of these findings was substantiated by analysis of ovarian cancer patient datasets, which showed that 25% of all cases displayed high PGC1α/ß expression along with an activated mitochondrial gene program. This study endorses the use of OXPHOS inhibitors to manage ovarian cancer and identifies the high expression of both PGC1α and ß as biomarkers to refine the selection of patients likely to benefit most from this therapy. SIGNIFICANCE: OXPHOS inhibition in ovarian cancer can exploit the metabolic vulnerabilities conferred by high PGC1α/ß expression and offers an effective approach to manage patients on the basis of PGC1α/ß expression.


Subject(s)
Ovarian Neoplasms , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , RNA-Binding Proteins , Animals , Female , Humans , Mice , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA-Binding Proteins/metabolism
3.
Angiogenesis ; 20(2): 233-241, 2017 May.
Article in English | MEDLINE | ID: mdl-28389777

ABSTRACT

Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasms , Protein Kinase Inhibitors/pharmacology , 3T3 Cells , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Human Umbilical Vein Endothelial Cells/pathology , Humans , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Neoplasms/blood supply , Neoplasms/drug therapy , Neoplasms/metabolism , Xenograft Model Antitumor Assays
4.
Cell Mol Life Sci ; 69(7): 1167-78, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22130514

ABSTRACT

We previously identified regulator of G-protein signaling 5 (RGS5) among several genes expressed by tumor-derived endothelial cells (EC). In this study, we provide the first in vivo/ex vivo evidence of RGS5 protein in the vasculature of ovarian carcinoma clinical specimens and its absence in human ovaries. Consistent with this, we show higher amounts of Rgs5 transcript in EC isolated from human cancers (as opposed to normal tissues) and demonstrate that expression is sustained by a milieu of factors typical of the proangiogenic tumor environment, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2). Supporting these findings, we show elevated levels of Rgs5 mRNA in the stroma from strongly (as opposed to weakly) angiogenic ovarian carcinoma xenografts and accordingly, we also show more of the protein associated to the abnormal vasculature. RGS5 protein predominantly colocalizes with the endothelium expressing platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) and to a much lesser extent with perivascular/mural cells expressing platelet-derived growth factor receptor-beta (PDGFR-ß) or alpha smooth muscle actin (αSMA). To toughen the relevance of the findings, we demonstrate RGS5 in the blood vessels of other cancer models endowed with a proangiogenic environment, such as human melanoma and renal carcinoma xenografts; to the contrary, it was undetectable in the vasculature of normal mouse tissues. RGS5 expression by the cancer vasculature triggered and retained by the proangiogenic microenvironment supports its exploitation as a novel biomarker and opens the path to explore new possibilities of therapeutic intervention aimed at targeting tumor blood vessels.


Subject(s)
Neoplasms/blood supply , Neoplasms/metabolism , Neovascularization, Pathologic , RGS Proteins/metabolism , Animals , Cells, Cultured , Female , Humans , Mice , Mice, Nude , Neoplasms/genetics , Neoplasms/pathology , Prognosis , RGS Proteins/genetics , Xenograft Model Antitumor Assays
5.
BMC Genomics ; 9: 201, 2008 Apr 30.
Article in English | MEDLINE | ID: mdl-18447899

ABSTRACT

BACKGROUND: Targeting tumor angiogenesis and vasculature is a promising strategy for the inhibition of tumor growth and dissemination. Evidence suggests that tumor vasculature expresses unique markers that distinguish it from normal vasculature. Our efforts focused on the molecular characterization of endothelial cells (EC) in the search for selective markers of tumor vasculature that might be helpful for the development of effective therapeutic approaches. RESULTS: We investigated by microarray analysis the gene expression profiles of EC purified and cultured from tumor (ovarian carcinoma [HOC-EC]) and normal (human adrenal gland [HA-EC]) tissue specimens. We found distinct transcriptional features characterizing the EC of different origin, and identified 158 transcripts highly expressed by HOC-EC. We analyzed four of these genes, ADAM23, FAP, GPNMB and PRSS3, which were not previously known to be expressed by endothelium. In vitro experiments confirmed the higher expression of the selected genes in tumor-derived endothelium with no expression in tumor cells. In vivo investigation by in situ hybridization established that ADAM23, GPNMB and PRSS3 expression is localized on blood vessels of human cancer specimens. CONCLUSION: These findings elucidate some of the molecular features of the tumor endothelium. Comparative transcriptomic analysis allowed us to determine molecular differences of tumor and normal tissue-derived endothelium and to identify novel markers that might be exploited to selectively target tumor vasculature.


Subject(s)
Biomarkers, Tumor/genetics , Endothelial Cells/metabolism , Neoplasms/blood supply , Neoplasms/genetics , ADAM Proteins/genetics , Adrenal Glands/blood supply , Adrenal Glands/metabolism , Antigens, Neoplasm/genetics , Cell Line, Tumor , Endopeptidases , Female , Gelatinases , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Membrane Glycoproteins/genetics , Membrane Proteins , Oligonucleotide Array Sequence Analysis , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/genetics , Serine Endopeptidases/genetics , Trypsin/genetics
6.
Mol Cancer Ther ; 4(5): 715-25, 2005 May.
Article in English | MEDLINE | ID: mdl-15897235

ABSTRACT

Vascular endothelial growth factor (VEGF) performs as an angiogenic and permeability factor in ovarian cancer, and its overexpression has been associated with poor prognosis. However, models to study its role as a marker of tumor progression are lacking. We generated xenograft variants derived from the A2780 human ovarian carcinoma (1A9), stably transfected with VEGF(121) in sense (1A9-VS-1) and antisense orientation (1A9-VAS-3). 1A9, 1A9-VS-1, and 1A9-VAS-3 disseminated in the peritoneal cavity of nude mice, but only 1A9-VS-1, the VEGF(121)-overexpressing tumor variant, produced ascites. Tumor biopsies from 1A9-VS-1 showed alterations in the vascular pattern and caused an angiogenic response in the chorioallantoic membrane assay. A significant level of soluble VEGF was detectable in the plasma of mice bearing 1A9-VS-1 even at an early stage of tumor growth. Plasma VEGF correlated positively with tumor burden in the peritoneal cavity and ascites accumulation. Cisplatin reduced the tumor burden and ascites in mice bearing 1A9-VS-1; the response was associated with a significant decrease of VEGF in plasma. This 1A9-VS-1 xenograft model reproduces the behavior of human ovarian cancer by growing in the peritoneal cavity, being highly malignant, and producing ascites. Plasma VEGF as a marker of tumor progression offers a valuable means of detecting early tumor response and following up treatments in an animal model.


Subject(s)
Ascites/pathology , DNA, Antisense/therapeutic use , Neovascularization, Pathologic/pathology , Ovarian Neoplasms/drug therapy , Peritoneal Neoplasms/pathology , Vascular Endothelial Growth Factor A/blood , Animals , Antineoplastic Agents/therapeutic use , Ascites/drug therapy , Chorioallantoic Membrane/metabolism , Cisplatin/therapeutic use , Disease Progression , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/genetics , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/secondary , Transplantation, Heterologous , Tumor Burden , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...