Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 9(1): 24, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321067

ABSTRACT

Development of safe, highly effective and affordable enteric fever vaccines is a global health priority. Live, oral typhoid vaccines induce strong mucosal immunity and long-term protection, but safety remains a concern. In contrast, efficacy wears off rapidly for injectable, polysaccharide-based vaccines, which elicit poor mucosal response. We previously reported Salmonella Typhi outer membrane protein, T2544 as a potential candidate for bivalent (S. Typhi and S. Paratyphi A) vaccine development. Here, we show that intranasal immunization with a subunit vaccine (chimera of T2544 and cholera toxin B subunit) induced strong systemic and intestinal mucosal immunity and protection from S. Typhi challenge in a mouse model. CTB-T2544 augmented gut-homing receptor expression on lymphocytes that produced Th1 and Th17 cytokines, secretory IgA in stool that inhibited bacterial motility and epithelial attachment, antibody recall response and affinity maturation with increased number of follicular helper T cells and CD4+ central and effector memory cells.

2.
Front Immunol ; 14: 1304170, 2023.
Article in English | MEDLINE | ID: mdl-38264668

ABSTRACT

Human Salmonella infections pose significant public health challenges globally, primarily due to low diagnostic yield of systemic infections, emerging and expanding antibiotic resistance of both the typhoidal and non-typhoidal Salmonella strains and the development of asymptomatic carrier state that functions as a reservoir of infection in the community. The limited long-term efficacy of the currently licensed typhoid vaccines, especially in smaller children and non-availability of vaccines against other Salmonella serovars necessitate active research towards developing a multivalent vaccine with wider coverage of protection against pathogenic Salmonella serovars. We had earlier reported immunogenicity and protective efficacy of a subunit vaccine containing a recombinant outer membrane protein (T2544) of Salmonella Typhi in a mouse model. This was achieved through the robust induction of serum IgG, mucosal secretory IgA and Salmonella-specific cytotoxic T cells as well as memory B and T cell response. Here, we report the development of a glycoconjugate vaccine, containing high molecular weight complexes of Salmonella Typhimurium O-specific polysaccharide (OSP) and recombinant T2544 that conferred simultaneous protection against S. Typhi, S. Paratyphi, S. Typhimurium and cross-protection against S. enteritidis in mice. Our findings corroborate with the published studies that suggested the potential of Salmonella OSP as a vaccine antigen. The role of serum antibodies in vaccine-mediated protection is suggested by rapid seroconversion with high titers of serum IgG and IgA, persistently elevated titers after primary immunization along with a strong antibody recall response with higher avidity serum IgG against both OSP and T2544 and significantly raised SBA titers of both primary and secondary antibodies against different Salmonella serovars. Elevated intestinal secretory IgA and bacterial motility inhibition by the secretory antibodies supported their role as well in vaccine-induced protection. Finally, robust induction of T effector memory response indicates long term efficacy of the candidate vaccine. The above findings coupled with protection of vaccinated animals against multiple clinical isolates confirm the suitability of OSP-rT2544 as a broad-spectrum candidate subunit vaccine against human infection due to typhoidal and non-typhoidal Salmonella serovars.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Child , Humans , Animals , Mice , Memory T Cells , Intestinal Secretions , Serogroup , Salmonella enteritidis , Vaccines, Subunit , Immunoglobulin A, Secretory , Immunoglobulin G
3.
Biochim Biophys Acta Gen Subj ; 1861(7): 1777-1787, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28341486

ABSTRACT

BACKGROUND: Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. METHODS: PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. RESULTS: PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. CONCLUSION: This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. GENERAL SIGNIFICANCE: Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC.


Subject(s)
Apoptosis , CCAAT-Enhancer-Binding Protein-alpha/physiology , Cell Cycle Proteins/genetics , Colorectal Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Apoptosis/drug effects , Benzylamines/pharmacology , Butyrates/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Cell Differentiation/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Octamer Transcription Factor-1/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridines/pharmacology , Polo-Like Kinase 1
4.
Int Immunopharmacol ; 36: 39-50, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27107798

ABSTRACT

Inflammatory bowel disease (IBD) is a group of inflammatory disorders of the intestine caused by dysregulated T-cell mediated immune response against commensal microflora. Probiotics are reported as therapeutically effective against IBD. However, variable efficacy of the live probiotic strains, difference in survival and persistence in the gut between the strains and the lack of insight into the mechanisms of probiotic action limit optimal therapeutic efficacy. Our aims were to evaluate the lactobacillus strains isolated from the North Indian population for the generation of regulatory cells and cytokines in the intestine, to study their effects on pro-inflammatory mediators in the mouse model of inflammatory bowel disease and to explore the underlying mechanisms of their actions. Among the selected lactobacillus strains, Lactobacillus casei Lbs2 (MTCC5953) significantly suppressed lipopolysaccharide-induced pro-inflammatory cytokine (TNF-alpha, IL-6) secretion. Both live and heat-killed Lbs2 polarized Th0 cells to T-regulatory (Treg) cells in vitro, increased the frequency of FoxP3(+) Treg cells in the mesenteric lymph nodes (MLNs) and alleviated macroscopic and histopathological features of colitis in probiotic-fed mice. Moreover, the levels of IL-12, TNF-alpha and IL-17A were suppressed, while IL-10 and TGF-beta levels were augmented in the colonic tissues of Lbs2-treated mice. The induced Treg (iTreg) cells secreted IL-10 and TGF-beta and exerted suppressive effects on the proliferation of effector T-cells. Adoptive transfer of iTreg cells ameliorated the disease manifestations of murine colitis and suppressed the levels of TNF-alpha and IL-17A. Finally, Lbs2 effects were mediated by Toll-like receptor 2 (TLR2) activation on the dendritic cells. This study identified live and heat-killed Lbs2 as putative therapeutic candidates against IBD and highlighted their Toll-like receptor 2-dependent immunomodulatory and regulatory function.


Subject(s)
Colitis/therapy , Dendritic Cells/drug effects , Immunotherapy/methods , Intestinal Mucosa/immunology , Lacticaseibacillus casei/immunology , Probiotics/therapeutic use , T-Lymphocytes, Regulatory/drug effects , Toll-Like Receptor 2/metabolism , Animals , Cells, Cultured , Colitis/chemically induced , Cytokines/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Hot Temperature , Humans , Immunosuppression Therapy , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Trinitrobenzenesulfonic Acid
5.
Virology ; 454-455: 270-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24725954

ABSTRACT

Viruses, obligate cellular parasites rely on host cellular functions and target the host cell cycle for their own benefit. In this study, effect of rotavirus infection on cell cycle machinery was explored. We found that rotavirus (RV) infection in MA104 cells induces the expression of cyclins and cyclin dependent kinases and down-regulates expression of CDK inhibitors, resulting in G1 to S phase transition. The rotavirus induced S phase accumulation was found to be concurrent with induction in expression of calmodulin and activation of CaMKI which is reported as inducer of G1-S phase transition. This cell cycle manipulation was found to be Ca(+2)/Calmodulin pathway dependent. The physiological relevance of G1 to S phase transition was established when viral gene expressions as well as viral titers were found to be increased in S phase synchronized cells and decreased in G0/G1 phase synchronized cells compared to unsynchronized cells during rotavirus infection.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Cell Cycle , Host-Pathogen Interactions , Rotavirus/physiology , Animals , Cell Line , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Epithelial Cells/physiology , Epithelial Cells/virology , Macaca mulatta , Protein Kinase Inhibitors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...