Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Breath Res ; 10(2): 026010, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27163246

ABSTRACT

There is a pressing need to develop a novel early-detection strategy for the precise evolution of small intestinal bacterial overgrowth (SIBO) in irritable bowel syndrome (IBS) patients. The current method based on a hydrogen breath test (HBT) for the detection of SIBO is highly controversial. HBT has many limitations and drawbacks. It often fails to indentify SIBO when IBS individuals have 'non-hydrogen-producing' colonic bacteria. Here, we show that hydrogen sulphide (H2S) in exhaled breath is distinctly altered for diarrhea-predominant IBS individuals with positive and negative SIBO by the activity of intestinal sulphate-reducing bacteria. Subsequently, by analyzing the excretion kinetics of breath H2S, we found a missing link between breath H2S and SIBO when HBT often fails to diagnose SIBO. Moreover, breath H2S can track the precise evolution of SIBO, even after the eradication of bacterial overgrowth. Our findings suggest that the changes in H2S in the bacterial environment may contribute to the pathogenesis of SIBO and the breath H2S as a potential biomarker for non-invasive, rapid and precise assessment of SIBO without the endoscopy-based microbial culture of jejunal aspirates, and thus may open new perspectives into the pathophysiology of SIBO in IBS subjects.


Subject(s)
Bacterial Infections/diagnosis , Breath Tests/methods , Hydrogen Sulfide/analysis , Intestine, Small/microbiology , Irritable Bowel Syndrome/diagnosis , Adult , Bacterial Infections/microbiology , Biomarkers/analysis , Exhalation , Female , Humans , Irritable Bowel Syndrome/microbiology , Male , Middle Aged
2.
Opt Lett ; 41(9): 1949-52, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27128046

ABSTRACT

A high-resolution cavity ring-down spectroscopic (CRDS) system based on a continuous wave (cw) mode-hop-free (MHF) external-cavity quantum cascade laser (EC-QCL) operating at λ∼5.2 µm has been developed for ultrasensitive detection of nitric oxide (NO). We report the performance of the high-resolution EC-QCL based cw-CRDS instrument by measuring the rotationally resolved Λ-doublet e and f components of the P(7.5) line in the fundamental band of NO at 1850.169 cm-1 and 1850.179 cm-1. A noise-equivalent absorption coefficient of 1.01×10-9 cm-1 Hz-1/2 was achieved based on an empty cavity ring-down time of τ0=5.6 µs and standard deviation of 0.11% with averaging of six ring-down time determinations. The CRDS sensor demonstrates the advantages of measuring parts per billion NO concentrations in N2, as well as in human breath samples with ultrahigh sensitivity and specificity. The CRDS system could also be generalized to measure simultaneously many other trace molecular species within the broad tuning range of cw EC-QCL, as well as for studying the rotationally resolved hyperfine structures.

3.
Sci Rep ; 5: 10936, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26039789

ABSTRACT

The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of (18)O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of (18)O in breath CO2 were manifested in individuals without the infections. In contrast, the (13)C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to (13)C-enriched glucose uptake, whereas a distinguishable change of breath (13)C/(12)C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the (18)O and (13)C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath (12)C(18)O(16)O and (13)C(16)O(16)O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen's physiology along with isotope-specific non-invasive diagnosis of the infection.


Subject(s)
Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Exhalation , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Helicobacter pylori/metabolism , Oxygen Isotopes/metabolism , Adult , Breath Tests , Case-Control Studies , Female , Glucose/metabolism , Helicobacter Infections/drug therapy , Humans , Male , Middle Aged , Models, Biological , ROC Curve
4.
Anal Bioanal Chem ; 406(22): 5405-12, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24939135

ABSTRACT

We report for the first time the excretion kinetics of the percentage dose of (13)C recovered/h ((13)C-PDR %/h) and cumulative PDR, i.e. c-PDR (%) to accomplish the highest diagnostic accuracy of the (13)C-urea breath test ((13)C-UBT) for the detection of Helicobacter pylori infection without any risk of diagnostic errors using an optical cavity-enhanced integrated cavity output spectroscopy (ICOS) method. An optimal diagnostic cut-off point for the presence of H. pylori infection was determined to be c-PDR (%) = 1.47 % at 60 min, using the receiver operating characteristic curve (ROC) analysis to overcome the "grey zone" containing false-positive and false-negative results of the (13)C-UBT. The present (13)C-UBT exhibited 100 % diagnostic sensitivity (true-positive rate) and 100 % specificity (true-negative rate) with an accuracy of 100 % compared with invasive endoscopy and biopsy tests. Our c-PDR (%) methodology also manifested both diagnostic positive and negative predictive values of 100 %, demonstrating excellent diagnostic accuracy. We also observed that the effect of endogenous CO2 production related to basal metabolic rates in individuals was statistically insignificant (p = 0.78) on the diagnostic accuracy. However, the presence of H. pylori infection was indicated by the profound effect of urea hydrolysis rate (UHR). Our findings suggest that the current c-PDR (%) is a valid and sufficiently robust novel approach for an accurate, specific, fast and noninvasive diagnosis of H. pylori infection, which could routinely be used for large-scale screening purposes and diagnostic assessment, i.e. for early detection and follow-up of patients.


Subject(s)
Breath Tests , Carbon Dioxide/chemistry , Carbon Isotopes/chemistry , Helicobacter Infections/diagnosis , Adult , Aged , Calibration , False Positive Reactions , Female , Helicobacter pylori , Humans , Hydrolysis , Kinetics , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry , Urea/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...