Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 27(38): 10230-9, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17881529

ABSTRACT

Simple cells in layer 4 of the primary visual cortex of the cat show contrast-invariant orientation tuning, in which the amplitude of the peak response is proportional to the stimulus contrast but the width of the tuning curve hardly changes with contrast. This study uses a detailed model of spiny stellate cells (SSCs) from cat area 17 to explain this property. The model integrates our experimental data, including morphological and intrinsic membrane properties and the number and spatial distribution of four major synaptic input sources of the SSC: the dorsal lateral geniculate nucleus (dLGN) and three cortical sources. The model also includes synaptic properties of these inputs. The cortical input served as sources of background activity, and visual stimuli was modeled as sinusoidal grating. For all contrasts, strong synaptic depression of the dLGN feedforward afferents compresses the firing rates in response to orthogonal stimuli, keeping these rates at practically the same low level. However, at preferred orientations, despite synaptic depression, firing rate changes as a function of contrast. Thus, when embedded in an active network, strong synaptic depression can explain contrast-invariant orientation tuning of simple cells. This is true also when the dLGN inputs are partially depressed as a result of their spontaneous activity and to some extent also when parameters were fitted to a more moderate level of synaptic depression. The model response is in close agreement with experimental results, in terms of both output spikes and membrane voltage (amplitude and fluctuations), with reasonable exceptions given that recurrent connections were not incorporated.


Subject(s)
Contrast Sensitivity/physiology , Geniculate Bodies/physiology , Long-Term Synaptic Depression/physiology , Models, Neurological , Orientation/physiology , Visual Cortex/physiology , Action Potentials/physiology , Animals , Cats , Synapses/physiology , Synaptic Transmission/physiology , Visual Pathways/physiology
2.
Front Neurosci ; 1(1): 7-18, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18982116

ABSTRACT

We present a novel framework for automatically constraining parameters of compartmental models of neurons, given a large set of experimentally measured responses of these neurons. In experiments, intrinsic noise gives rise to a large variability (e.g., in firing pattern) in the voltage responses to repetitions of the exact same input. Thus, the common approach of fitting models by attempting to perfectly replicate, point by point, a single chosen trace out of the spectrum of variable responses does not seem to do justice to the data. In addition, finding a single error function that faithfully characterizes the distance between two spiking traces is not a trivial pursuit. To address these issues, one can adopt a multiple objective optimization approach that allows the use of several error functions jointly. When more than one error function is available, the comparison between experimental voltage traces and model response can be performed on the basis of individual features of interest (e.g., spike rate, spike width). Each feature can be compared between model and experimental mean, in units of its experimental variability, thereby incorporating into the fitting this variability. We demonstrate the success of this approach, when used in conjunction with genetic algorithm optimization, in generating an excellent fit between model behavior and the firing pattern of two distinct electrical classes of cortical interneurons, accommodating and fast-spiking. We argue that the multiple, diverse models generated by this method could serve as the building blocks for the realistic simulation of large neuronal networks.

3.
J Neurophysiol ; 94(1): 865-70, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15728769

ABSTRACT

We show that when temporal summation takes place, depression of postsynaptic responses may ensue when the underlying synaptic conductance change is constant or even facilitatory. We term this phenomenon "apparent depression." Such apparent depression is most notable for slow synaptic conductance changes, for high frequency, and when the synapse is located at distal dendritic sites. We show that, when temporal summation ensues, the erroneous estimation of short-term synaptic plasticity arises partially from the conventional measurement of synaptic dynamics at postsynaptic potential peak time. This can be corrected when measuring overlapping synaptic responses at fixed intervals after stimulus time. Somatic voltage clamp also helps to partially correct for the apparent depression, but a good model of the neuron can do even better in providing a more accurate view of the underlying synaptic conductances.


Subject(s)
Models, Neurological , Neural Inhibition/physiology , Synapses/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Action Potentials/radiation effects , Animals , Computer Simulation , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , Humans , Neuronal Plasticity/physiology , Neuronal Plasticity/radiation effects , Reference Values , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...