Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Neurophysiol ; 131(4): 768-777, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38380828

ABSTRACT

NMDA-type glutamate receptors (NMDARs) play a crucial role in synaptogenesis, circuit development, and synaptic plasticity, serving as fundamental components in cellular models of learning and memory. Their dysregulation has been implicated in several neurological disorders and synaptopathies. NMDARs are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The composition of GluN2 subunits determines the main biophysical properties of the channel, such as calcium permeability and gating kinetics, and influences the ability of the receptor to interact with postsynaptic proteins involved in normal synaptic physiology and plasticity, including scaffolding proteins and signaling molecules. During early development, NMDARs in the forebrain contain solely the GluN2B subunit, a necessary subunit for proper synaptogenesis and synaptic plasticity. As the animal matures, the expression of the GluN2A subunit increases, leading to a partial replacement of GluN2B-containing synaptic NMDARs with GluN2A-containing receptors. The switch in the synaptic GluN2A-to-GluN2B ratio has a significant impact on the kinetics of excitatory postsynaptic currents and diminishes the synaptic plasticity capacity. In this study, we present findings indicating that GluN2A expression occurs earlier in a mouse model of fragile X syndrome (FXS). This altered timing of GluN2A expression affects various important parameters of NMDAR-mediated excitatory postsynaptic currents, including maximal current amplitude, decay time, and response to consecutive stimuli delivered in close temporal proximity. These observations suggest that the early expression of GluN2A during a critical period when synapses and circuits are developing could be an underlying factor contributing to the formation of pathological circuits in the FXS mouse model.NEW & NOTEWORTHY NMDA receptors (NMDARs) play important roles in synaptic transmission and are involved in multiple neurological disorders. During development, GluN2A in the forebrain becomes incorporated into previously GluN2B-dominated NMDARs, leading to the "GluN2A/GluN2B ratio switch." This is a crucial step for normal brain development. Here we present findings indicating that GluN2A expression occurs earlier in the fragile X mouse and this could be an underlying factor contributing to the pathology found in the fragile X model.


Subject(s)
Fragile X Syndrome , Receptors, N-Methyl-D-Aspartate , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Synaptic Transmission , Neuronal Plasticity
2.
Neuropsychopharmacology ; 49(1): 51-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37369776

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.


Subject(s)
Psychiatry , Schizophrenia , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Central Nervous System , Brain/metabolism
3.
Commun Biol ; 6(1): 952, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37723282

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.


Subject(s)
Calcium , Parvalbumins , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Hippocampus , Interneurons , Parvalbumins/genetics , Seizures , Receptors, N-Methyl-D-Aspartate/genetics
4.
Mol Pharmacol ; 99(5): 399-411, 2021 05.
Article in English | MEDLINE | ID: mdl-33688039

ABSTRACT

NMDA receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic currents. These receptors are involved in several important brain functions, including learning and memory, and have also been implicated in neuropathological conditions and acute central nervous system injury, which has driven therapeutic interest in their modulation. The EU1794 series of positive and negative allosteric modulators of NMDA receptors has structural determinants of action near the preM1 helix that is involved in channel gating. Here, we describe the effects of the negative allosteric modulator EU1794-4 on GluN1/GluN2A channels studied in excised outside-out patches. Coapplication of EU1794-4 with a maximally effective concentration of glutamate and glycine increases the fraction of time the channel is open by nearly 1.5-fold, yet reduces single-channel conductance by increasing access of the channel to several subconductance levels, which has the net overall effect of reducing the macroscopic current. The lack of voltage-dependence of negative modulation suggests this is unrelated to a channel block mechanism. As seen with other NMDA receptor modulators that reduce channel conductance, EU1794-4 also reduces the Ca2+ permeability relative to monovalent cations of GluN1/GluN2A receptors. We conclude that EU1794-4 is a prototype for a new class of NMDA receptor negative allosteric modulators that reduce both the overall current that flows after receptor activation and the flux of Ca2+ ion relative to monovalent cations. SIGNIFICANCE STATEMENT: NMDA receptors are implicated in many neurological conditions but are challenging to target given their ubiquitous expression. Several newly identified properties of the negative allosteric modulator EU1794-4, including reducing Ca2+ flux through NMDA receptors and attenuating channel conductance, explain why this modulator reduces but does not eliminate NMDA receptor function. A modulator with these properties could have therapeutic advantages for indications in which attenuation of NMDA receptor function is beneficial, such as neurodegenerative disease and acute injury.


Subject(s)
Allosteric Regulation/drug effects , Calcium/metabolism , Permeability/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain/drug effects , Brain/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , HEK293 Cells , Humans , Xenopus laevis
5.
ACS Chem Neurosci ; 12(1): 79-98, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33326224

ABSTRACT

N-Methyl-d-aspartate receptors (NMDARs) are ionotropic ligand-gated glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system (CNS). Several neurological disorders may involve NMDAR hypofunction, which has driven therapeutic interest in positive allosteric modulators (PAMs) of NMDAR function. Here we describe modest changes to the tetrahydroisoquinoline scaffold of GluN2C/GluN2D-selective PAMs that expands activity to include GluN2A- and GluN2B-containing recombinant and synaptic NMDARs. These new analogues are distinct from GluN2C/GluN2D-selective compounds like (+)-(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (CIQ) by virtue of their subunit selectivity, molecular determinants of action, and allosteric regulation of agonist potency. The (S)-enantiomers of two analogues (EU1180-55, EU1180-154) showed activity at NMDARs containing all subunits (GluN2A, GluN2B, GluN2C, GluN2D), whereas the (R)-enantiomers were primarily active at GluN2C- and GluN2D-containing NMDARs. Determination of the actions of enantiomers on triheteromeric receptors confirms their unique pharmacology, with greater activity of (S) enantiomers at GluN2A/GluN2D and GluN2B/GluN2D subunit combinations than (R) enantiomers. Evaluation of the (S)-EU1180-55 and EU1180-154 response of chimeric kainate/NMDA receptors revealed structural determinants of action within the pore-forming region and associated linkers. Scanning mutagenesis identified structural determinants within the GluN1 pre-M1 and M1 regions that alter the activity of (S)-EU1180-55 but not (R)-EU1180-55. By contrast, mutations in pre-M1 and M1 regions of GluN2D perturb the actions of only the (R)-EU1180-55 but not the (S) enantiomer. Molecular modeling supports the idea that the (S) and (R) enantiomers interact distinctly with GluN1 and GluN2 pre-M1 regions, suggesting that two distinct sites exist for these NMDAR PAMs, each of which has different functional effects.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Allosteric Regulation , Models, Molecular , Receptors, N-Methyl-D-Aspartate/metabolism
6.
Front Synaptic Neurosci ; 12: 588295, 2020.
Article in English | MEDLINE | ID: mdl-33343326

ABSTRACT

AMPA-type glutamate receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits and play important roles in synaptic transmission and plasticity. Here, we have investigated the development of AMPAR-mediated synaptic transmission in the hippocampus of the Fmr1 knock-out (KO) mouse, a widely used model of Fragile X syndrome (FXS). FXS is the leading monogenic cause of intellectual disability and autism spectrum disorders (ASD) and it is considered a neurodevelopmental disorder. For that reason, we investigated synaptic properties and dendritic development in animals from an early stage when synapses are starting to form up to adulthood. We found that hippocampal CA1 pyramidal neurons in the Fmr1-KO mouse exhibit a higher AMPAR-NMDAR ratio early in development but reverses to normal values after P13. This increase was accompanied by a larger presence of the GluA2-subunit in synaptic AMPARs that will lead to altered Ca2+ permeability of AMPARs that could have a profound impact upon neural circuits, learning, and diseases. Following this, we found that young KO animals lack Long-term potentiation (LTP), a well-understood model of synaptic plasticity necessary for proper development of circuits, and exhibit an increased frequency of spontaneous miniature excitatory postsynaptic currents, a measure of synaptic density. Furthermore, post hoc morphological analysis of recorded neurons revealed altered dendritic branching in the KO group. Interestingly, all these anomalies are transitory and revert to normal values in older animals. Our data suggest that loss of FMRP during early development leads to temporary upregulation of the GluA2 subunit and this impacts synaptic plasticity and altering morphological dendritic branching.

7.
J Physiol ; 596(20): 5017-5031, 2018 10.
Article in English | MEDLINE | ID: mdl-30132892

ABSTRACT

KEY POINTS: Fragile X syndrome (FXS) is a genetic condition that is the most common form of inherited intellectual impairment and causes a range of neurodevelopmental complications including learning disabilities and intellectual disability and shares many characteristics with autism spectrum disorder (ASD). In the FXS mouse model, Fmr1-/y , impaired synaptic plasticity was restored by pharmacologically inhibiting GluN2A-containing NMDA receptors but not GluN2B-containing receptors. Similar results were obtained by crossing Fmr1-/y with GluN2A knock-out (Grin2A-/- ) mice. These results suggest that dampening the elevated levels of GluN2A-containing NMDA receptors in Fmr1-/y mice has the potential to restore hyperexcitability of the neural circuitry to (a more) normal-like level of brain activity. ABSTRACT: NMDA receptors (NMDARs) play important roles in synaptic plasticity at central excitatory synapses, and dysregulation of their function may lead to severe disorders such Fragile X syndrome (FXS). FXS is caused by transcriptional silencing of the FMR1 gene followed by lack of the encoding protein. Here we examined the effects of pharmacological and genetic manipulation of hippocampal NMDAR functions in long-term potentiation (LTP) and depression (LTD). We found impaired NMDAR-dependent LTP in the Fmr1-deficient mice, which could be fully restored when GluN2A-containing NMDARs was pharmacological inhibited. Interestingly, similar LTP effects were observed when the GluN2A gene (Grin2a) was deleted in Fmr1-/y mice (Fmr1-/y /Grin2a-/- double knockout). In addition, GluN2A inhibition improved elevated mGluR5-dependent LTD to normal level in the Fmr1-/y mouse. These findings suggest that GluN2A is a promising target in FXS research that could help us better understand the disorder.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Fragile X Syndrome/metabolism , Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Male , Mice , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
8.
Neuropharmacology ; 128: 43-53, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28943283

ABSTRACT

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability, with additional symptoms including attention deficit and hyperactivity, anxiety, impulsivity, and repetitive movements or actions. The majority of FXS cases are attributed to a CGG expansion that leads to transcriptional silencing and diminished expression of fragile X mental retardation protein (FMRP). FMRP, an RNA binding protein, regulates the synthesis of dendritically-translated mRNAs by stalling ribosomal translation. Loss of FMRP leads to increased translation of some of these mRNAs, including the CNS-specific tyrosine phosphatase STEP (STriatal-Enriched protein tyrosine Phosphatase). Genetic reduction of STEP in Fmr1 KO mice have diminished audiogenic seizures and a reversal of social and non-social anxiety-related abnormalities. This study investigates whether a newly discovered STEP inhibitor (TC-2153) could attenuate the behavioral and synaptic abnormalities in Fmr1 KO mice. TC-2153 reversed audiogenic seizure incidences, reduced hyperactivity, normalized anxiety states, and increased sociability in Fmr1 KO mice. Moreover, TC-2153 reduced dendritic spine density and improved synaptic aberrations in Fmr1 KO neuronal cultures as well as in vivo. TC-2153 also reversed the mGluR-mediated exaggerated LTD in brain slices derived from Fmr1 KO mice. These studies suggest that STEP inhibition may have therapeutic benefit in FXS.


Subject(s)
Excitatory Postsynaptic Potentials/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/complications , Fragile X Syndrome/pathology , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Synapses/pathology , Adaptation, Ocular/drug effects , Adaptation, Ocular/genetics , Animals , Animals, Newborn , Anxiety/drug therapy , Anxiety/etiology , Benzothiepins/pharmacology , Choice Behavior/drug effects , Dendritic Spines/drug effects , Dendritic Spines/genetics , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epilepsy, Reflex/drug therapy , Epilepsy, Reflex/etiology , Excitatory Postsynaptic Potentials/drug effects , Exploratory Behavior/drug effects , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hippocampus/pathology , Hippocampus/ultrastructure , Mice , Mice, Transgenic
9.
J Neurosci ; 36(38): 9817-27, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27656021

ABSTRACT

UNLABELLED: Fragile X syndrome (FXS) is a neurodevelopmental disease. It is one of the leading monogenic causes of intellectual disability among boys with most also displaying autism spectrum disorder traits. Here we investigated the role of NMDA receptors on mGluR-dependent long-term depression (mGluR-LTD), a key biomarker in the disease, at four different developmental stages. First, we applied the mGluR agonist 3,5-dihydroxyphenylglycine in the absence or presence of the NMDAR blocker, APV, hereby unmasking the NMDAR component in this process. As expected, in the presence of APV, we found more LTD in the mouse KO than in WT. This, however, was only observed in the p30-60 age group. At all other age groups tested, mGluR-LTD was almost identical between KO and WT. Interestingly, at p60, in the absence of APV, no or very little LTD was found in KO that was completely restored by application of APV. This suggests that the underlying cause of the enhanced mGluR-LTD in KO (at p30) is caused by dysregulated NMDAR signaling. To investigate this further, we next used NMDAR-subunit-specific antagonists. Inhibition of GluN2B, but not GluN2A, blocked mGluR-LTD only in WT. This was in contrast in the KO where blocking GluN2B rescued mGluR-LTD, suggesting GluN2B-containing NMDARs in the KO are hyperactive. Thus, these findings suggest strong involvement of GluN2B-containing-NMDARs in the pathophysiology of FXS and highlight a potential path for treatment for the disease. SIGNIFICANCE STATEMENT: There is currently no cure for fragile X, although medications targeting specific FXS symptoms do exist. The FXS animal model, the Fmr1 knock-out mouse, has demonstrated an increased mGluR5-mediated long-term depression (LTD) leading to several clinical trials of mGluR5 inhibitors/modulators, yet all have failed. In addition, surprisingly little information exists about the possible role of other ion channels/receptors, including NMDA receptors (NMDAR), in mGluR-LTD. Here we focus on NMDARs and their regulation of mGluR-mediated LTD at different developmental stages using several different NMDAR blockers/antagonists. Our findings suggest dysregulated NMDARs in the pathophysiology of FXS leading to altered mGluR-mediated LTD. Together, these data will help to develop new drug candidates that could lead to reversal of the FXS phenotype.


Subject(s)
Fragile X Syndrome/physiopathology , Long-Term Synaptic Depression/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/genetics , Age Factors , Animals , Biophysics , CA3 Region, Hippocampal/pathology , Disease Models, Animal , Electric Stimulation , Excitatory Amino Acid Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , In Vitro Techniques , Long-Term Synaptic Depression/drug effects , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Synapses/drug effects , Synapses/metabolism
10.
Pflugers Arch ; 468(4): 717-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26729265

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) channel is a non-selective cation channel that is mainly found in nociceptive neurons of the peripheral nervous system; however, these channels have also been located within the CNS, including the entorhinal cortex. Whole-cell patch-clamp recordings of principal entorhinal cortex (EC) layers II/III neurons revealed that evoked inhibitory postsynaptic currents were depressed by application of the TRPV1 agonist capsaicin (CAP), accompanied by a change in the pair-pulse ratio (PPR). In addition, recordings of miniature inhibitory postsynaptic currents (mIPSCs) revealed that inter-event intervals but not amplitude were decreased in wild-type (WT) after application of CAP. This suggests that TRPV1 channels are functional in the entorhinal cortex and are located on inhibitory neurons with their axonal arborization within layers II/III. In order to study TRPV1 channels and their involvement in long-term potentiation (LTP) induction in a more intact circuit, extracellular field potential recordings were performed in EC layers II/III. It was found that activated TRPV1 channels preclude induction of long-term potentiation. In sharp contrast, clear LTP was observed when antagonizing TRPV1 channels or recording from TRPV1 knock-out mice. Thus, these results suggests that signaling through activating inhibitory presynaptic TRPV1 channels represents a novel mechanism by which a shift in feed-forward inhibition of layers II/III cortical principal neurons prompt changes in synaptic strength and thereby contribute to a change of information storage within the brain.


Subject(s)
Entorhinal Cortex/metabolism , Long-Term Potentiation , TRPV Cation Channels/metabolism , Animals , Axons/drug effects , Axons/metabolism , Axons/physiology , Capsaicin/pharmacology , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Feedback, Physiological , Inhibitory Postsynaptic Potentials , Mice , Sensory System Agents/pharmacology , TRPV Cation Channels/agonists , TRPV Cation Channels/genetics
11.
Behav Pharmacol ; 26(8 Spec No): 733-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26110222

ABSTRACT

The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in the three-chamber test. Fmr1 KO mice spent more time with stranger mice compared with the WT. However, after a correction for hyperactivity, their apparent increase in sociability became identical to that of the WT. Furthermore, the Fmr1 KO mice could not differentiate between a familiar or a novel mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity coexists in ASD patients.


Subject(s)
Anxiety/metabolism , Autism Spectrum Disorder/metabolism , Disease Models, Animal , Fragile X Mental Retardation Protein/metabolism , Hyperkinesis/metabolism , Social Behavior Disorders/metabolism , Animals , Anxiety/genetics , Autism Spectrum Disorder/genetics , Behavior, Animal/physiology , Biogenic Monoamines/metabolism , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Hyperkinesis/genetics , Male , Mice , Mice, Knockout , Motor Activity , Social Behavior , Social Behavior Disorders/genetics
12.
Nat Neurosci ; 14(6): 727-35, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21516102

ABSTRACT

The function, trafficking and synaptic signaling of AMPA receptors are tightly regulated by phosphorylation. Ca(2+)/calmodulin-dependent kinase II (CaMKII) phosphorylates the GluA1 AMPA receptor subunit at Ser831 to increase single-channel conductance. We show that CaMKII increases the conductance of native heteromeric AMPA receptors in mouse hippocampal neurons through phosphorylation of Ser831. In addition, co-expression of transmembrane AMPA receptor regulatory proteins (TARPs) with recombinant receptors is required for phospho-Ser831 to increase conductance of heteromeric GluA1-GluA2 receptors. Finally, phosphorylation of Ser831 increases the efficiency with which each subunit can activate, independent of agonist efficacy, thereby increasing the likelihood that more receptor subunits will be simultaneously activated during gating. This underlies the observation that phospho-Ser831 increases the frequency of openings to larger conductances rather than altering unitary conductance. Together, these findings suggest that CaMKII phosphorylation of GluA1-Ser831 decreases the activation energy for an intrasubunit conformational change that regulates the conductance of the receptor when the channel pore opens.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hippocampus/cytology , Membrane Proteins/metabolism , Neurons/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Animals , Gene Expression Regulation/genetics , Gene Knock-In Techniques , Mice , Mice, Inbred C57BL , Phosphorylation , Serine/metabolism , Signal Transduction/genetics
13.
Brain Res ; 1381: 21-30, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21241666

ABSTRACT

TRPA1 channels are a member of the transient receptor potential (TRP) superfamily. Several of its members, including TRPA1 can exist in at least two distinct open states: a restricted and a dilated state. The restricted state is a tetramer non-selective cation channel, whereas the dilated state allows influx of much larger molecules, e.g. Yo-Pro (Mw~630). The exact nature of the dilated channel is not well understood, however it was recently shown that the dilated state is regulated by extracellular divalent, especially calcium. Using open channel blockers as tool compounds and a combination of calcium imaging, fluorescence dye uptake and whole-cell patch clamp recordings I here demonstrate that amiloride and its analogue 5-(N,N-Dimethyl)amiloride (DMA) block the channels at low but not at high extracellular calcium. Hence, these data suggest that amiloride and other open channel blockers bind to sites revealed during the dilation process. Furthermore, the same series of compounds blocked the agonist-induced Yo-Pro uptake in TRPA1 expressing cells. Thus, these results support the hypothesis that in low extracellular calcium the TRP channels are dilating, and as a consequence open channel blockers such as amiloride are allowed deeper into the pore providing a more efficient block. The TRP channel dilation mechanism may play important roles in many sensory processes, including pain and hearing.


Subject(s)
Amiloride/pharmacology , Calcium Channels/metabolism , Ion Channel Gating/drug effects , Nerve Tissue Proteins/metabolism , Sodium Channel Blockers/pharmacology , Transient Receptor Potential Channels/metabolism , Amiloride/analogs & derivatives , Animals , Cell Line , Cells, Cultured , Patch-Clamp Techniques , TRPA1 Cation Channel
14.
Future Med Chem ; 2(5): 843-58, 2010 May.
Article in English | MEDLINE | ID: mdl-21426205

ABSTRACT

The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is a nonselective cation channel that is highly expressed in small-diameter sensory neurons, where it functions as a polymodal receptor, responsible for detecting potentially harmful chemicals, mechanical forces and temperatures. TRPA1 is also activated and/or sensitized by multiple endogenous inflammatory mediators. As such, TRPA1 likely mediates the pain and neurogenic inflammation caused by exposure to reactive chemicals. In addition, it is also possible that this channel may mediate some of the symptoms of chronic inflammatory conditions such as asthma. We review recent advances in the biology of TRPA1 and summarize the evidence for TRPA1 as a therapeutic drug target. In addition, we provide an update on TRPA1 medicinal chemistry and the progress in the search for novel TRPA1 antagonists.


Subject(s)
Calcium Channels/metabolism , Drug Discovery , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/therapeutic use , Nerve Tissue Proteins/metabolism , Pain/drug therapy , Transient Receptor Potential Channels/metabolism , Animals , Calcium Channels/immunology , Chemistry, Pharmaceutical/trends , Drug Discovery/trends , Humans , Inflammation/drug therapy , Membrane Transport Modulators/pharmacology , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/immunology , TRPA1 Cation Channel , Transient Receptor Potential Channels/agonists , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/immunology
16.
J Physiol ; 586(20): 4925-34, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18772206

ABSTRACT

The furosemide-sensitive potassium-chloride cotransporter (KCC2) plays an important role in establishing the intracellular chloride concentration in many neurons within the central nervous system. Consequently, modulation of KCC2 function will regulate the reversal potential for synaptic GABAergic inputs, thus setting the strength of inhibitory transmission. We show that tonic activation of group I metabotropic glutamate receptors (mGluR1s) regulates inhibitory synaptic strength via modulation of KCC2 function in pyramidal neurons of the hippocampal CA3 area. Specifically, group I mGluRs signal via activation of a protein kinase C-dependent pathway to alter KCC2 activity, thereby altering the intracellular chloride concentration, and thus inhibitory synaptic input. This interaction between the glutamatergic and chloride transport systems highlights a novel homeostatic mechanism whereby ambient glutamate levels directly regulate the inhibitory synaptic tone by setting the activity level of KCC2. Thus, mGluRs are poised to play a pivotal role in providing a direct interplay between the excitatory and inhibitory systems in the hippocampus.


Subject(s)
Hippocampus/physiology , Receptors, Metabotropic Glutamate/metabolism , Symporters/metabolism , Synaptic Transmission/physiology , Animals , Cells, Cultured , Mice , K Cl- Cotransporters
17.
Mol Pharmacol ; 73(4): 1225-34, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18171730

ABSTRACT

The nonselective cation channel TRPA1 (ANKTM1, p120) is a potential mediator of pain, and selective pharmacological modulation of this channel may be analgesic. Although several TRPA1 activators exist, these tend to be either reactive or of low potency and/or selectivity. The aim of the present study, therefore, was to identify novel TRPA1 agonists. Using a combination of calcium fluorescent assays and whole-cell electrophysiology, we discovered several compounds that possess potent, selective TRPA1-activating activity, including several lipid compounds (farnesyl thiosalicylic acid, farnesyl thioacetic acid, 15-deoxy-Delta(12,14)-prostaglandin J(2), and 5,8,11,14-eicosatetraynoic acid), and two marketed drugs: disulfiram (Antabuse; a compound used in the treatment of alcohol abuse) and the antifungal agent chlordantoin. Farnesyl thiosalicylic acid activates the channel in excised patches and in the absence of calcium. Furthermore, using a quadruple TRPA1 mutant, we show that the mechanism of action of farnesyl thiosalicylic acid differs from that of the reactive electrophilic reagent allylisothiocyanate. As a TRPA1 agonist with a potentially novel mechanism of action, farnesyl thiosalicylic acid may be useful in the study of TRPA1 channels.


Subject(s)
Calcium Channels/metabolism , Farnesol/analogs & derivatives , Ion Channel Gating/drug effects , Nerve Tissue Proteins/metabolism , Salicylates/pharmacology , Transient Receptor Potential Channels/metabolism , Animals , CHO Cells , Calcium/metabolism , Cells, Cultured , Cricetinae , Cricetulus , Dogs , Electrophysiology , Farnesol/chemistry , Farnesol/pharmacology , Fluorescence , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Humans , Isothiocyanates/pharmacology , Male , Nerve Tissue Proteins/agonists , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Ruthenium Red , Salicylates/chemistry , TRPA1 Cation Channel , Transfection , Transient Receptor Potential Channels/agonists
18.
J Neurosci ; 26(45): 11720-5, 2006 Nov 08.
Article in English | MEDLINE | ID: mdl-17093093

ABSTRACT

In hippocampus, the net flow of excitability is controlled by inhibitory input provided by the many populations of local circuit inhibitory interneurons. In principal cells, GABA(A) receptor-mediated synaptic input undergoes a highly coordinated shift from depolarizing early in life to a more conventional hyperpolarizing inhibition on maturation. This switch in inhibitory input polarity is controlled by the developmental regulation of two chloride cotransporters (NKCC1 and KCC2) that results in a net shift from high to low intracellular Cl(-). Whether inhibitory input onto inhibitory interneurons demonstrates a similar developmental shift in intracellular Cl(-) is unexplored. Using the gramicidin perforated-patch configuration, we recorded from CA3 hippocampal stratum lucidum interneurons and pyramidal cells to monitor inhibitory input across a broad developmental range. GABA(A) receptor-mediated synaptic input onto stratum lucidum inhibitory interneurons was shunting in nature across the entire developmental age range tested, as resting membrane potential and the IPSC reversal potential remained within a few millivolts (1-4 mV) between postnatal day 5 (P5) and P31. Furthermore, sensitivity to block of the two chloride cotransporters KCC2 and NKCC1 did not differ across the same age range, suggesting that their relative expression is fixed across development. In contrast, pyramidal cell synaptic inhibition demonstrated the well described switch from depolarizing to hyperpolarizing over the same age range. Thus, in contrast to principal cells, inhibitory synaptic input onto CA3 interneurons remains shunting throughout development.


Subject(s)
Hippocampus/cytology , Interneurons/physiology , Neural Inhibition/physiology , Synapses/physiology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Age Factors , Animals , Animals, Newborn , Bicuculline/pharmacology , Dose-Response Relationship, Radiation , Electric Stimulation/methods , GABA Antagonists/pharmacology , Hippocampus/growth & development , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Inhibitory Postsynaptic Potentials/radiation effects , Interneurons/cytology , Interneurons/drug effects , Interneurons/radiation effects , Lysine/analogs & derivatives , Lysine/metabolism , Mice , Neural Inhibition/drug effects , Neural Inhibition/radiation effects , Patch-Clamp Techniques/methods , Synapses/drug effects , Synapses/radiation effects , Synaptic Transmission/drug effects , Synaptic Transmission/radiation effects
19.
J Neurosci ; 25(1): 42-51, 2005 Jan 05.
Article in English | MEDLINE | ID: mdl-15634765

ABSTRACT

NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission, as well as synaptic plasticity. Given that overstimulation of NMDA receptors can cause cell death, it is not surprising that these channels are under tight control by a series of inhibitory extracellular ions, including zinc, magnesium, and H+. We studied the inhibition by extracellular protons of recombinant NMDA receptor NR1/NR2B single-channel and macroscopic responses in transiently transfected human embryonic kidney HEK 293 cells using patch-clamp techniques. We report that proton inhibition proceeds identically in the absence or presence of agonist, which rules out the possibility that protonation inhibits receptors by altering coagonist binding. The response of macroscopic currents in excised patches to rapid jumps in pH was used to estimate the microscopic association and dissociation rates for protons, which were 1.4 x 10(9) m(-1) sec(-1) and 110-196 sec(-1), respectively (K(d) corresponds to pH 7.2). Protons reduce the open probability without altering the time course of desensitization or deactivation. Protons appear to slow at least one time constant describing the intra-activation shut-time histogram and modestly reduce channel open time, which we interpret to reflect a reduction in the overall channel activation rate and possible proton-induced termination of openings. This is consistent with a modest proton-dependent slowing of the macroscopic response rise time. From these data, we propose a physical model of proton inhibition that can describe macroscopic and single-channel properties of NMDA receptor function over a range of pH values.


Subject(s)
Protons , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Binding Sites , Cell Line , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Glycine/metabolism , Humans , Hydrogen-Ion Concentration , Ion Channel Gating/physiology , Kinetics , Models, Chemical , Protein Conformation , Rats , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/physiology , Recombinant Proteins/metabolism
20.
J Physiol ; 563(Pt 2): 345-58, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15649985

ABSTRACT

NR2A and NR2B are the predominant NR2 NMDA receptor subunits expressed in cortex and hippocampus. The relative expression level of NR2A and NR2B is regulated developmentally and these two subunits have been suggested to play distinct roles in long-term synaptic plasticity. We have used patch-clamp recording of recombinant NMDA receptors expressed in HEK293 cells to characterize the activation properties of both NR1/NR2A and NR1/NR2B receptors. Recordings from outside-out patches that contain a single active channel show that NR2A-containing receptors have a higher probability of opening at least once in response to a brief synaptic-like pulse of glutamate than NR2B-containing receptors (NR2A, 0.80; NR2B, 0.56), a higher peak open probability (NR2A, 0.50; NR2B, 0.12), and a higher open probability within an activation (NR2A, 0.67; NR2B, 0.37). Analysis of the sequence of single-channel open and closed intervals shows that both NR2A- and NR2B-containing receptors undergo multiple conformational changes prior to opening of the channel, with at least one of these steps being faster for NR2A than NR2B. These distinct properties produce profoundly different temporal signalling profiles for NR2A- and NR2B-containing receptors. Simulations of synaptic responses demonstrate that at low frequencies typically used to induce long-term depression (LTD; 1 Hz), NR1/NR2B makes a larger contribution to total charge transfer and therefore calcium influx than NR1/NR2A. However, under high-frequency tetanic stimulation (100 Hz; > 100 ms) typically used to induce long-term potentiation (LTP), the charge transfer mediated by NR1/NR2A considerably exceeds that of NR1/NR2B.


Subject(s)
Ion Channel Gating/physiology , Protein Subunits/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Cell Line , Glutamic Acid/pharmacology , Humans , Kinetics , Rats , Signal Transduction , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...