Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Life Sci Space Res (Amst) ; 9: 84-92, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27345205

ABSTRACT

The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000µGyh(-1), while the inner radiation belt maximum dose was at the level of 2200µGyh(-1). If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84mGy after 6.5h, which is similar to the average absorbed dose inside ISS for 15days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA.


Subject(s)
Cosmic Radiation , Radiation Monitoring/instrumentation , Solar Activity , Space Flight/instrumentation , Radiation Dosage , Radiation Protection , Time Factors
3.
Life Sci Space Res (Amst) ; 4: 92-114, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26177624

ABSTRACT

Ionizing radiation is recognized to be one of the main health concerns for humans in the space radiation environment. Estimation of space radiation effects on health requires the accurate knowledge of the accumulated absorbed dose, which depends on the global space radiation distribution, solar cycle and local shielding generated by the 3D mass distribution of the space vehicle. This paper presents an overview of the spectrometer-dosimeters of the Liulin type, which were developed in the late 1980s and have been in use since then. Two major measurement systems have been developed by our team. The first one is based on one silicon detector and is known as a Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2002, 2003), while the second one is a dosimetric telescope (DT) with two or three silicon detectors. The Liulin-type instruments were calibrated using a number of radioactive sources and particle accelerators. The main results of the calibrations are presented in the paper. In the last section of the paper some of the most significant scientific results obtained in space and on aircraft, balloon and rocket flights since 1989 are presented.


Subject(s)
Cosmic Radiation , Radiation Dosage , Radiation Monitoring/instrumentation , Radiometry/instrumentation , Extraterrestrial Environment , Humans , Radiation Monitoring/methods , Radiation, Ionizing , Radiometry/methods , Solar Activity , Space Flight , Spacecraft
4.
Adv Space Res ; 14(10): 651-4, 1994 Oct.
Article in English | MEDLINE | ID: mdl-11540004

ABSTRACT

The Liulin dosimeter-radiometer on the MIR space station detected the 19 October 1989 high energy solar proton event. These results show that the main particle increase contains protons with energies up to about 9 GeV. After the main particle onset the Liulin dosimeter observed a typical geomagnetic cutoff modulation of the dose rate from the solar particles as the MIR space station traversed magnetic latitudes. When the interplanetary shock and associated solar plasma enveloped the earth on 20 October between 14 and 17 UT the radiation exposure increased significantly due to the lowering of the geomagnetic cutoff. The analysis of this event shows how various geophysical phenomena can significantly modulate the dose rate encountered by earth-orbiting spacecraft.


Subject(s)
Cosmic Radiation , Protons , Radiation Monitoring/instrumentation , Solar Activity , Space Flight/instrumentation , Spacecraft/instrumentation , Magnetics , Radiation Dosage , Radiometry
5.
Adv Space Res ; 12(2-3): 321-4, 1992.
Article in English | MEDLINE | ID: mdl-11537022

ABSTRACT

Using data from dosimetry-radiometry system "Liulin" on board of "Mir"-space station the particle flux and doserate during September-October, 1989 has been studied. The orbit of the station was 379 km perigee, 410 km apogee and 51.6 degrees inclination. Special attention has been paid to the flux and doserate changes inside the station after intensive solar proton events (SPE) on 29 of September, 1989. The comparison between the doses before and after the solar flares shows increase of the calculated mean dose per day by factor of 10 to 200. During the SPE on the 29 of September the additional dose was 310 mrad. The results of the experiment are compared with the data for the solar proton fluxes obtained on the GOES-7 satellite.


Subject(s)
Cosmic Radiation , Protons , Radiation Monitoring , Solar System , Space Flight/instrumentation , Bulgaria , Equipment Design , Radiation Dosage , Radiation Protection , Radiometry/instrumentation , Spacecraft/instrumentation , USSR
6.
Adv Space Res ; 9(10): 253-5, 1989.
Article in English | MEDLINE | ID: mdl-11537300

ABSTRACT

An experiment involving active detection of space radiation was carried out in the Space Research Institute (SRI) of Bulgarian Academy of Sciences, in preparation of the flight of the second Bulgarian cosmonaut. The radiations that would be encountered on the flight were modelled including solar and galactic cosmic rays and the particle radiation in the Earth's radiation belts. The dose rate was calculated for these different radiations behind the shielding of the space station. The variations in dose rates over the period of the flight were calculated and compared with measurements made during the orbit of the Mir Space Station. The calculated and measured dose rates agreed within 15-35%.


Subject(s)
Cosmic Radiation , Protons , Radiation Monitoring/instrumentation , Solar Activity , Space Flight/instrumentation , Atlantic Ocean , Models, Theoretical , Radiation Dosage , Radiation Protection , Radiometry , South America , Spacecraft/instrumentation , Weightlessness
SELECTION OF CITATIONS
SEARCH DETAIL
...