Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gait Posture ; 103: 172-177, 2023 06.
Article in English | MEDLINE | ID: mdl-37210850

ABSTRACT

BACKGROUND: A common framework is needed to assess walking impairments in older adults and individuals with stroke. This study develops an Assessment of Bilateral Locomotor Efficacy (ABLE) that is a straightforward indicator of walking function. RESEARCH QUESTION: Can we develop a clinically accessible index of walking function that summarizes gait dysfunction secondary to stroke? METHODS: The ABLE index was developed using a retrospective sample of 14 community-dwelling older adults. Data from 33 additional older adults and 105 individuals with chronic post-stroke hemiparesis were used to validate the index by factor analysis of the score components and correlation with multiple common assessments of lower extremity impairment and function. RESULTS: The ABLE consists of four components summed for a maximum possible score of 12. The components include self-selected walking speed (SSWS), speed change from SSWS to fastest speed, non-paretic leg step length change from SSWS to fastest speed, and peak paretic leg ankle power. The ABLE revealed good concurrent validity with all recorded functional assessments. Factor analysis suggested that the ABLE measures two factors: one for forward progression and another for speed adaptability. SIGNIFICANCE: The ABLE offers a straightforward, objective measure of walking function in adults, including individuals with chronic stroke. The index may also prove useful as a screening tool for subclinical pathology in community-dwelling older adults, but further testing is required. We encourage utilization of this index and reproduction of findings to adapt and refine the instrument for wider use and eventual clinical application.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Aged , Retrospective Studies , Stroke/complications , Gait , Walking , Paresis
2.
J Biomech ; 146: 111419, 2023 01.
Article in English | MEDLINE | ID: mdl-36587460

ABSTRACT

Gender biases and inequities are prevalent across many scientific fields and biomechanics is likely no exception. While progress has been made to support women in the field, especially at biomechanics society conferences, the recent COVID-19 pandemic has exacerbated professional isolation. The International Women in Biomechanics (IWB) community started in July 2020 with the mission of fostering an environment for women and other under-represented genders in biomechanics to gain year-round support, visibility, and allyship. Nearly 700 biomechanists have joined the IWB community from over 300 universities/organizations and 33 countries. Our community ranges in career stages and professions and interacts through a forum-style platform, teleconference meetings, and social media. In 2021, we conducted a survey to identify the needs, concerns, and issues faced by individuals in the IWB community. We received 144 responses from members in 16 countries. Our survey revealed three primary needs for women in biomechanics: supportive working environments, career planning support, and addressing workplace gender bias. These results, in conjunction with scientific evidence on workforce gender bias, helped us identify three key areas to meet our mission: Member Support, Community Outreach, and Empowering Allyship. Several levels of support are required in these three areas to ensure a lasting, positive, and sustainable impact on gender equity in biomechanics. We conclude by providing our perspectives on an evidence-based call to action to continue addressing gender bias and inequity at the individual, institutional, and scientific society levels. These actions can collectively enhance our allyship for women in the field of biomechanics.


Subject(s)
COVID-19 , Sexism , Humans , Female , Male , Biomechanical Phenomena , Pandemics
3.
Sci Rep ; 12(1): 8953, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624121

ABSTRACT

Stroke survivors often exhibit gait dysfunction which compromises self-efficacy and quality of life. Muscle Synergy Analysis (MSA), derived from electromyography (EMG), has been argued as a method to quantify the complexity of descending motor commands and serve as a direct correlate of neural function. However, controversy remains regarding this interpretation, specifically attribution of MSA as a neuromarker. Here we sought to determine the relationship between MSA and accepted neurophysiological parameters of motor efficacy in healthy controls, high (HFH), and low (LFH) functioning stroke survivors. Surface EMG was collected from twenty-four participants while walking at their self-selected speed. Concurrently, transcranial magnetic stimulation (TMS) was administered, during walking, to elicit motor evoked potentials (MEPs) in the plantarflexor muscles during the pre-swing phase of gait. MSA was able to differentiate control and LFH individuals. Conversely, motor neurophysiological parameters, including soleus MEP area, revealed that MEP latency differentiated control and HFH individuals. Significant correlations were revealed between MSA and motor neurophysiological parameters adding evidence to our understanding of MSA as a correlate of neural function and highlighting the utility of combining MSA with other relevant outcomes to aid interpretation of this analysis technique.


Subject(s)
Pyramidal Tracts , Stroke , Evoked Potentials, Motor/physiology , Humans , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Quality of Life
4.
Exp Brain Res ; 237(10): 2595-2605, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31372688

ABSTRACT

The neural mechanisms of walking impairment after stroke are not well characterized. Specifically, there is a need for understanding the mechanisms of impaired plantarflexor power generation in late stance. Here, we investigated the association between two neurophysiologic markers, the long-latency reflex (LLR) response and dynamic facilitation of antagonist motor-evoked responses, and walking function. Fourteen individuals with chronic post-stroke hemiparesis and thirteen healthy controls performed both isometric and dynamic plantarflexion. Transcranial magnetic stimulation (TMS) assessed supraspinal drive to the tibialis anterior. LLR activity was assessed during dynamic voluntary plantarflexion and individuals post-stroke were classified as either LLR present (LLR+) or absent (LLR-). All healthy controls and nine individuals post-stroke exhibited LLRs, while five did not. LLR+ individuals revealed higher clinical scores, walking speeds, and greater ankle plantarflexor power during walking compared to LLR- individuals. LLR- individuals exhibited exaggerated responses to TMS during dynamic plantarflexion relative to healthy controls. The LLR- subset revealed dysfunctional modulation of stretch responses and antagonist supraspinal drive relative to healthy controls and the higher functioning LLR+ individuals post-stroke. These abnormal physiologic responses allow for characterization of individuals post-stroke along a dimension that is clinically relevant and provides additional information beyond standard behavioral assessments. These findings provide an opportunity to distinguish among the heterogeneity of lower extremity motor impairments present following stroke by associating them with responses at the nervous system level.


Subject(s)
Lower Extremity/physiopathology , Reflex/physiology , Stroke/physiopathology , Walking/physiology , Adult , Aged , Evoked Potentials, Motor/physiology , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiology , Reaction Time/physiology , Reflex, Stretch/physiology , Stroke/complications , Transcranial Magnetic Stimulation/methods
5.
Front Comput Neurosci ; 11: 78, 2017.
Article in English | MEDLINE | ID: mdl-28912707

ABSTRACT

Muscle synergy analysis (MSA) is a mathematical technique that reduces the dimensionality of electromyographic (EMG) data. Used increasingly in biomechanics research, MSA requires methodological choices at each stage of the analysis. Differences in methodological steps affect the overall outcome, making it difficult to compare results across studies. We applied MSA to EMG data collected from individuals post-stroke identified as either responders (RES) or non-responders (nRES) on the basis of a critical post-treatment increase in walking speed. Importantly, no clinical or functional indicators identified differences between the cohort of RES and nRES at baseline. For this exploratory study, we selected the five highest RES and five lowest nRES available from a larger sample. Our goal was to assess how the methodological choices made before, during, and after MSA affect the ability to differentiate two groups with intrinsic physiologic differences based on MSA results. We investigated 30 variations in MSA methodology to determine which choices allowed differentiation of RES from nRES at baseline. Trial-to-trial variability in time-independent synergy vectors (SVs) and time-varying neural commands (NCs) were measured as a function of: (1) number of synergies computed; (2) EMG normalization method before MSA; (3) whether SVs were held constant across trials or allowed to vary during MSA; and (4) synergy analysis output normalization method after MSA. MSA methodology had a strong effect on our ability to differentiate RES from nRES at baseline. Across all 10 individuals and MSA variations, two synergies were needed to reach an average of 90% variance accounted for (VAF). Based on effect sizes, differences in SV and NC variability between groups were greatest using two synergies with SVs that varied from trial-to-trial. Differences in SV variability were clearest using unit magnitude per trial EMG normalization, while NC variability was less sensitive to EMG normalization method. No outcomes were greatly impacted by output normalization method. MSA variability for some, but not all, methods successfully differentiated intrinsic physiological differences inaccessible to traditional clinical or biomechanical assessments. Our results were sensitive to methodological choices, highlighting the need for disclosure of all aspects of MSA methodology in future studies.

6.
Front Neurol ; 8: 699, 2017.
Article in English | MEDLINE | ID: mdl-29312124

ABSTRACT

Walking after stroke is often described as requiring excessive muscle co-contraction, yet, evidence that co-contraction is a ubiquitous motor control strategy for this population remains inconclusive. Co-contraction, the simultaneous activation of agonist and antagonist muscles, can be assessed with electromyography (EMG) but is often described qualitatively. Here, our goal is to determine if co-contraction is associated with gait impairments following stroke. Fifteen individuals with chronic stroke and nine healthy controls walked on an instrumented treadmill at self-selected speed. Surface EMGs were collected from the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) of each leg. EMG envelope amplitudes were assessed in three ways: (1) no normalization, (2) normalization to the maximum value across the gait cycle, or (3) normalization to maximal M-wave. Three co-contraction indices were calculated across each agonist/antagonist muscle pair (MG/TA and SOL/TA) to assess the effect of using various metrics to quantify co-contraction. Two factor ANOVAs were used to compare effects of group and normalization for each metric. Co-contraction during the terminal stance (TSt) phase of gait is not different between healthy controls and the paretic leg of individuals post-stroke, regardless of the metric used to quantify co-contraction. Interestingly, co-contraction was similar between M-max and non-normalized EMG; however, normalization does not impact the ability to resolve group differences. While a modest correlation is revealed between the amount of TSt co-contraction and walking speed, the relationship is not sufficiently strong to motivate further exploration of a causal link between co-contraction and walking function after stroke. Co-contraction does not appear to be a common strategy employed by individuals after stroke. We recommend exploration of alternative EMG analysis approaches in an effort to learn more about the causal mechanisms of gait impairment following stroke.

SELECTION OF CITATIONS
SEARCH DETAIL
...