Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(18): 10460-10473, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32803978

ABSTRACT

We report the first disclosure of IRAK3 degraders in the scientific literature. Taking advantage of an opportune byproduct obtained during our efforts to identify IRAK4 inhibitors, we identified ready-to-use, selective IRAK3 ligands in our compound collection with the required properties for conversion into proteolysis-targeting chimera (PROTAC) degraders. This work culminated with the discovery of PROTAC 23, which we demonstrated to be a potent and selective degrader of IRAK3 after 16 h in THP1 cells. 23 induced proteasome-dependent degradation of IRAK3 and required both CRBN and IRAK3 binding for activity. We conclude that PROTAC 23 constitutes an excellent in vitro tool with which to interrogate the biology of IRAK3.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/metabolism , Phthalimides/pharmacology , Proteolysis/drug effects , Pyrroles/pharmacology , Triazines/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Humans , Ligands , Phthalimides/chemical synthesis , Pyrroles/chemical synthesis , THP-1 Cells , Triazines/chemical synthesis , Ubiquitin-Protein Ligases/metabolism
2.
Sci Transl Med ; 12(541)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350132

ABSTRACT

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma driven by mutations in KIT or platelet-derived growth factor α (PDGFRα). Although first-line treatment, imatinib, has revolutionized GIST treatment, drug resistance due to acquisition of secondary KIT/PDGFRα mutations develops in a majority of patients. Second- and third-line treatments, sunitinib and regorafenib, lack activity against a plethora of mutations in KIT/PDGFRα in GIST, with median time to disease progression of 4 to 6 months and inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) causing high-grade hypertension. Patients with GIST have an unmet need for a well-tolerated drug that robustly inhibits a range of KIT/PDGFRα mutations. Here, we report the discovery and pharmacological characterization of AZD3229, a potent and selective small-molecule inhibitor of KIT and PDGFRα designed to inhibit a broad range of primary and imatinib-resistant secondary mutations seen in GIST. In engineered and GIST-derived cell lines, AZD3229 is 15 to 60 times more potent than imatinib in inhibiting KIT primary mutations and has low nanomolar activity against a wide spectrum of secondary mutations. AZD3229 causes durable inhibition of KIT signaling in patient-derived xenograft (PDX) models of GIST, leading to tumor regressions at doses that showed no changes in arterial blood pressure (BP) in rat telemetry studies. AZD3229 has a superior potency and selectivity profile to standard of care (SoC) agents-imatinib, sunitinib, and regorafenib, as well as investigational agents, avapritinib (BLU-285) and ripretinib (DCC-2618). AZD3229 has the potential to be a best-in-class inhibitor for clinically relevant KIT/PDGFRα mutations in GIST.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Humans , Mutation , Naphthyridines , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Pyrazoles , Pyrroles , Rats , Receptor, Platelet-Derived Growth Factor alpha/genetics , Triazines , Urea/analogs & derivatives , Vascular Endothelial Growth Factor A
3.
J Med Chem ; 63(9): 4517-4527, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32297743

ABSTRACT

JAK1, JAK2, JAK3, and TYK2 belong to the JAK (Janus kinase) family. They play critical roles in cytokine signaling. Constitutive activation of JAK/STAT pathways is associated with a wide variety of diseases. Particularly, pSTAT3 is observed in response to the treatment with inhibitors of oncogenic signaling pathways such as EGFR, MAPK, and AKT and is associated with resistance or poorer response to agents targeting these pathways. Among the JAK family kinases, JAK1 has been shown to be the primary driver of STAT3 phosphorylation and signaling; therefore, selective JAK1 inhibition can be a viable means to overcome such treatment resistances. Herein, an account of the medicinal chemistry optimization from the promiscuous kinase screening hit 3 to the candidate drug 21 (AZD4205), a highly selective JAK1 kinase inhibitor, is reported. Compound 21 has good preclinical pharmacokinetics. Compound 21 displayed an enhanced antitumor activity in combination with an approved EGFR inhibitor, osimertinib, in a preclinical non-small-cell lung cancer (NSCLC) xenograft NCI-H1975 model.


Subject(s)
Indoles/therapeutic use , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Female , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 26(14): 3751-3759, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32220888

ABSTRACT

PURPOSE: The emergence of secondary mutations is a cause of resistance to current KIT inhibitors used in the treatment of patients with gastrointestinal stromal tumors (GIST). AZD3229 is a selective inhibitor of wild-type KIT and a wide spectrum of primary and secondary mutations seen in patients with GIST. The objective of this analysis is to establish the pharmacokinetic-pharmacodynamic (PKPD) relationship of AZD3229 in a range of mouse GIST tumor models harboring primary and secondary KIT mutations, and to benchmark AZD3229 against other KIT inhibitors. EXPERIMENTAL DESIGN: A PKPD model was developed for AZD3229 linking plasma concentrations to inhibition of phosphorylated KIT using data generated from several in vivo preclinical tumor models, and in vitro data generated in a panel of Ba/F3 cell lines. RESULTS: AZD3229 drives inhibition of phosphorylated KIT in an exposure-dependent manner, and optimal efficacy is observed when >90% inhibition of KIT phosphorylation is sustained over the dosing interval. Integrating the predicted human pharmacokinetics into the mouse PKPD model predicts that an oral twice daily human dose greater than 34 mg is required to ensure adequate coverage across the mutations investigated. Benchmarking shows that compared with standard-of-care KIT inhibitors, AZD3229 has the potential to deliver the required target coverage across a wider spectrum of primary or secondary mutations. CONCLUSIONS: We demonstrate that AZD3229 warrants clinical investigation as a new treatment for patients with GIST based on its ability to inhibit both ATP-binding and A-loop mutations of KIT at clinically relevant exposures.


Subject(s)
Gastrointestinal Stromal Tumors/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Quinazolines/pharmacology , Triazoles/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Gastrointestinal Stromal Tumors/pathology , Humans , Mice , Models, Biological , Mutation , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Quinazolines/therapeutic use , Receptor, Platelet-Derived Growth Factor alpha/genetics , Triazoles/therapeutic use , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...