Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(3): 304-307, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38059516

ABSTRACT

Different combinations of organomagnesium reagents and zinc bromide react with either 1,3-dimethoxy-4-tert-butylcalix[4]areneH2 (L(OMe)2H2) or trialkoxycalix[4]arenes (L(OR)3H) (R = n-Pr, n-pentyl) to afford mixed-metal calix[4]arene systems. Intriguing molecular structures are formed and the systems are capable of the ring opening polymerisation of ε-caprolactone under N2, air, or as melts.

2.
Faraday Discuss ; 222(0): 405-423, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32115600

ABSTRACT

Silicon photosensitisation via energy transfer from molecular dye layers is a promising area of research for excitonic silicon photovoltaics. We present the synthesis and photophysical characterisation of vinyl and allyl terminated Si(111) surfaces decorated with perylene molecules. The functionalised silicon surfaces together with Langmuir-Blodgett (LB) films based on perylene derivatives were studied using a wide range of steady-state and time resolved spectroscopic techniques. Fluorescence lifetime quenching experiments performed on the perylene modified monolayers revealed energy transfer efficiencies to silicon of up to 90 per cent. We present a simple model to account for the near field interaction of a dipole emitter with the silicon surface and distinguish between the 'true' FRET region (<5 nm) and a different process, photon tunnelling, occurring for distances between 10-50 nm. The requirements for a future ultra-thin crystalline solar cell paradigm include efficient surface passivation and keeping a close distance between the emitter dipole and the surface. These are discussed in the context of existing limitations and questions raised about the finer details of the emitter-silicon interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...